

OpenCourseWare

CALCULUS – EVALUATION TEST 10

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the *recursive* sequence $(a_n)_{n \in \mathbb{N}}$ defined as

$$a_1 = 1;$$
 $a_{n+1} = 3 - \frac{1}{a_n},$ with $n = 1, 2, ...$

- (a) Prove that the sequence is increasing and bounded above by 3.
- (b) Calculate $\lim_{n\to\infty} a_n$.

Problem 2.	Analyze the convergence of the series	$\sum_{n=1}^{\infty}$	$\frac{3 \ln(n^2)}{(n+1)!} .$
------------	---------------------------------------	-----------------------	--------------------------------

Problem 3. Let f(x) = sin(x).

- (a) Use the Taylor polynomial of degree 2 about $a = \pi/2$ for f(x) to approximate $sin(\pi/2 + 0.1)$ and find an *upper bound* for the involved error.
- (b) Consider the Taylor polynomial of degree $n \in \mathbb{N}$ about $a = \pi/2$ for f(x) and apply the change of variable $s = x \pi/2$. Then, do you recognize the resulting Taylor polynomial?

Problem 4. Calculate the exact number of real solutions of the equation

$$\arctan(x) - \frac{1}{2}\ln(1+x^2) + \alpha = 0,$$

depending on the value of the parameter $\alpha \in \mathbb{R}$.