OpenCourseWare

CALCULUS - EVALUATION TEST 12 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the monotone increasing sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined by the recursive formula

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n}=\sqrt{\frac{2+3 a_{n-1}}{2}}, \quad \text { with } n \geq 1
\end{aligned}
$$

- Prove that the sequence is bounded.
- Calculate $\lim _{n \rightarrow \infty} a_{n}$.

SOLUTION

Let us suppose that the sequence has a finite limit, say $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$. Thus, as $n \rightarrow \infty$ in both sides of the recursive formula, we get

$$
a=\sqrt{\frac{2+3 a}{2}} \Longrightarrow a^{2}=\frac{3}{2} a+1 \quad \Longrightarrow \quad a=-\frac{1}{2}, 2
$$

where the value $a=-1 / 2$ must be discarded as the sequence is increasing with positive terms. Then, $a=2$ is the only candidate to be the value of the limit.

Now, let us prove by the principle of induction that the given sequence is bounded, namely $0 \leq a_{n} \leq 2$ for all $n \in \mathbb{N} \cup\{0\}$. First, this property holds for $n=0$, as $0 \leq a_{0}=1 \leq 2$. Then, assuming that $0 \leq a_{k} \leq 2$ for $n=k \geq 0$, we get (for $n=k+1$)

$$
0 \leq a_{k+1}=\sqrt{\frac{2+3 a_{k}}{2}} \leq \sqrt{\frac{2+6}{2}}=2
$$

Hence, the sequence is bounded and has a finite limit value equal to $a=2$, as previously calculated.

Problem 2. Consider the function

$$
f(x)= \begin{cases}\arctan \left(\frac{1}{x^{2}}\right)+\frac{\pi}{2}, & \text { if } x \neq 0 \\ \pi, & \text { if } x=0\end{cases}
$$

- Prove that the function $f(x)$ is differentiable for all $x \in \mathbb{R}$.
- Find for which values of $x \in \mathbb{R}$ the function $f(x)$ is increasing.

SOLUTION

For $x \neq 0, f(x)$ is differentiable as defined in terms of differentiable functions. In addition, we have

$$
f^{\prime}(x)=\frac{-2 x}{x^{4}+1}
$$

On the other hand, at $x=0$, we get

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\arctan \left(\frac{1}{x^{2}}\right)+\frac{\pi}{2}-\pi}{x}=\lim _{x \rightarrow 0} \frac{-2 x}{x^{4}+1}=0
$$

where the l'Hôpital's rule has been applied in the last-but-one identity. Hence, $f(x)$ is differentiable at $x=0$ as well. Moreover, $f(x)$ is increasing for $x<0$ since $f^{\prime}(x)>0$ in this case.

Problem 3. Let $\mathrm{F}(\mathrm{x})=\int_{0}^{x^{3}} \ln \left(\mathrm{t}^{\frac{1}{3}}+\frac{1}{2}\right) d t$.
(a) Find and classify the local extrema of $F(x)$ for $x \in(0,1)$.
(b) Use the Maclaurin polynomial of degree 3 for $F(x)$ to approximate $F(0.2)$.

SOLUTION

(a) Thanks to the Fundamental Theorem of Calculus, we have $F^{\prime}(x)=3 x^{2} \ln \left(x+\frac{1}{2}\right)$. Hence, the only critical point in the interval $(0,1)$ is $x=1 / 2$. In addition, $F(x)$ is decreasing for $x<1 / 2\left(\right.$ as $\left.F^{\prime}(x)<0\right)$ and increasing for $x>1 / 2\left(\right.$ as $\left.F^{\prime}(x)>0\right)$. Hence, $x=1 / 2$ is a point of local minimum.
(b) The Maclaurin polynomial of degree 3 for $F(x)$ is $P_{3}(x)=\ln \left(\frac{1}{2}\right) x^{3}$, hence

$$
\mathrm{F}(0.2) \approx \ln \left(\frac{1}{2}\right)(0.2)^{3} \approx-0.0055
$$

Problem 4. Calculate $\int_{e}^{5} \frac{d x}{x \ln (x)}$.

SOLUTION

By applying the change of variable $u=\ln (x)(d u=d x / x)$, we get

$$
\int_{e}^{5} \frac{\mathrm{~d} x}{x \ln (x)}=\int_{1}^{\ln (5)} \frac{\mathrm{du}}{u}=\ln (\ln (5))-0=\ln (\ln (5)) .
$$

Problem 5. Study the convergence of the improper integral $\int_{0}^{\infty} \frac{|\sin (x)|}{x+x^{2}} d x$.

SOLUTION

The given improper integral converges as, for instance, we can write

$$
\int_{0}^{\infty} \frac{|\sin (x)|}{x+x^{2}} \mathrm{~d} x=\int_{0}^{1} \frac{|\sin (x)|}{x+x^{2}} \mathrm{~d} x+\int_{1}^{\infty} \frac{|\sin (x)|}{x+x^{2}} \mathrm{~d} x
$$

where the first integral in the right-hand-side is not improper and the second (improper) integral converges thanks to the limit comparison test with $\int_{1}^{\infty} 1 / x^{3 / 2} d x$.

