uc3m Universidad Carlos III de Madrid

OpenCourseWare

CALCULUS – EVALUATION TEST 12

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the monotone increasing sequence $(a_n)_{n\in\mathbb{N}}$ defined by the *recursive* formula

$$\label{eq:a_0} \begin{split} a_0 &= 1\,;\\ a_n &= \sqrt{\frac{2+3a_{n-1}}{2}}\,, \quad \text{with } n\geq 1\,. \end{split}$$

- Prove that the sequence is bounded.
- Calculate $\lim_{n\to\infty} a_n$.

Problem 2. Consider the function

$$f(x) = \begin{cases} \arctan\left(\frac{1}{x^2}\right) + \frac{\pi}{2}, & \text{if } x \neq 0, \\ \pi, & \text{if } x = 0. \end{cases}$$

- Prove that the function f(x) is differentiable for all $x \in \mathbb{R}$.
- Find for which values of $x \in \mathbb{R}$ the function f(x) is increasing.

Problem 3. Let $F(x) = \int_0^{x^3} \ln\left(t^{\frac{1}{3}} + \frac{1}{2}\right) dt$.

- (a) Find and classify the local extrema of F(x) for $x \in (0, 1)$.
- (b) Use the Maclaurin polynomial of degree 3 for F(x) to approximate F(0.2).

Problem 4. Calculate $\int_{e}^{5} \frac{dx}{x \ln(x)}$.

Problem 5. Study the convergence of the <i>improper</i> integral \int	~∞ 0	$\frac{ \sin(x) }{x+x^2}\mathrm{d}x.$
--	---------	---------------------------------------