## OpenCourseWare

## CALCULUS - EVALUATION TEST 13 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Prove that 5 is an upper bound for the recursive sequence defined as

$$
a_{1}=0 ; \quad a_{n+1}=4+\frac{1}{5} a_{n}, \quad \text { for } n \geq 1
$$

Then, for $n \geq 1$, check that

$$
a_{n}=5-\frac{1}{5^{n-2}}
$$

## SOLUTION

Let us prove by the principle of induction that the given sequence is bounded above by
5. First, we have $a_{1}=0 \leq 5$. Then, supposing that $a_{k} \leq 5$ for $n=k \in \mathbb{N}$, we get

$$
\frac{1}{5} a_{k} \leq 1 \Longrightarrow 4+\frac{1}{5} a_{k} \leq 5 \Longrightarrow a_{k+1} \leq 5
$$

Hence, we can conclude that 5 is an upper bound for $\left(a_{n}\right)_{n \in \mathbb{N}}$.
Now, from $a_{n}=5-\frac{1}{5^{n-2}}$, we get

$$
a_{1}=5-\frac{1}{5^{-1}}=5-5=0
$$

for $n=1$. In addition, we have

$$
a_{n+1}=5-\frac{1}{5^{n-1}}
$$

and

$$
4+\frac{1}{5} a_{n}=5-\frac{1}{5^{n-1}}
$$

for $n \geq 1$. Thus, we can conclude that the indicated explicit expression for $a_{n}$ is the solution of the recursive formula for $n \geq 1$.

Problem 2. Determine the exact number of real solutions of the equation

$$
e^{-x}-e^{x}-\ln (x)=0, \quad \text { with } x \in(0,+\infty)
$$

## SOLUTION

Let us define $f(x)=e^{-x}-e^{x}-\ln (x)$, which is continuous and differentiable for $x>0$. Thus, we have

$$
f^{\prime}(x)=-e^{-x}-e^{x}-\frac{1}{x}<0
$$

for $x \in(0,+\infty)$, which means that $f(x)$ is decreasing in the definition interval. Finally, since

$$
\lim _{x \rightarrow 0^{+}} f(x)=+\infty, \quad \lim _{x \rightarrow+\infty} f(x)=-\infty
$$

we can guarantee that the equation $f(x)=0$ has a unique real solution for $x \in(0,+\infty)$.

Problem 3. Let

$$
F(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

Use a Taylor polynomial of degree 3 for $F(x)$ to approximate the value $F(1 / 10)$ and find an upper bound for the involved error.

## SOLUTION

After writing $e^{-t^{2}}=1-t^{2}+o\left(t^{2}\right)$, we get

$$
F(x)=\int_{0}^{x} e^{-t^{2}} d t=\int_{0}^{x}\left[1-t^{2}+o\left(t^{2}\right)\right] d t=x-\frac{x^{3}}{3}+o\left(x^{3}\right),
$$

for values of $x$ in a neighborhood of the origin. Hence, the Taylor polynomial of degree 3 about $a=0$ for $F(x)$ is given by $P_{3}(x)=x-x^{3} / 3$, which can be used to approximate the desired value as

$$
F(1 / 10) \approx P_{3}(1 / 10)=\frac{1}{10}-\frac{1}{3000}=\frac{299}{3000}
$$

On the other hand, noting that $F^{(4)}(x)=4 x\left(3-2 x^{2}\right) e^{-x^{2}}$, the remainder associated with $P_{3}(x)$ is given by

$$
R_{3}(x)=\frac{4 c\left(3-2 c^{2}\right) e^{-c^{2}}}{4!} x^{4}
$$

with $c \in(0, x)$ when $x>0$. Thus, an upper bound for the involved error at $x=1 / 10$ can be found as

$$
\left|R_{3}(1 / 10)\right|=\left|\frac{c\left(3-2 c^{2}\right) e^{-c^{2}}}{6} \frac{1}{10^{4}}\right| \leq \frac{1}{6 \cdot 10^{4}}\left(3 c+2 c^{3}\right) e^{-c^{2}} \leq \frac{1}{6 \cdot 10^{4}}\left(\frac{3}{10}+\frac{2}{10^{3}}\right)
$$

where the last inequality holds as $e^{-c^{2}}<1$, being $c \in(0,1 / 10)$.

Problem 4. Find all differentiable functions $F:(0,+\infty) \rightarrow \mathbb{R}$ that satisfy

$$
F^{\prime}(x)=\ln ^{2}(x), \quad F(1)=0
$$

## SOLUTION

Integrating by parts twice, we get

$$
\begin{aligned}
F(x) & =\int \ln ^{2}(x) d x=x \ln ^{2}(x)-2 \int \ln (x) d x=x \ln ^{2}(x)-2 x \ln (x)+2 \int d x \\
& =x \ln ^{2}(x)-2 x \ln (x)+2 x+k
\end{aligned}
$$

with $k \in \mathbb{R}$. Finally, after imposing $F(1)=0$, which yields $k=-2$, we obtain

$$
F(x)=x \ln ^{2}(x)-2 x \ln (x)+2 x-2 .
$$

Problem 5. Find all values of $a, b \in \mathbb{R}$ that make the function

$$
f(x)= \begin{cases}a+\int_{0}^{2 x} \frac{\sin (t)}{t} d t, & \text { if } x<0 \\ \sqrt{2}+b \cos (2 x) \ln (1+3 x), & \text { if } x \geq 0\end{cases}
$$

continuous and differentiable in the domain.

## SOLUTION

For $x<0, f(x)$ is continuous and differentiable thanks to the Fundamental Theorem of Calculus (all assumptions are readily seen to be satisfied). Moreover, for $x>0, f(x)$ is continuous and differentiable since defined in terms of continuous and differentiable elementary functions.

Now, continuity of $f(x)$ at $x=0$ holds if $\lim _{x \rightarrow 0} f(x)=f(0)=\sqrt{2}$. Since

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left[a+\int_{0}^{2 x} \frac{\sin (t)}{t} d t\right]=a \\
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}[\sqrt{2}+b \cos (2 x) \ln (1+3 x)]=\sqrt{2}
\end{gathered}
$$

we need $a=\sqrt{2}$ to ensure the continuity of $f(x)$ at $x=0$, hence in its domain.
On the other hand, taking $a=\sqrt{2}, f(x)$ is differentiable at $x=0$ if the following lateral limits

$$
\begin{gathered}
f_{-}^{\prime}(0)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{\sin (2 x)}{x}=2, \\
f_{+}^{\prime}(0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{b \cos (2 x) \ln (1+3 x)}{x}=3 b
\end{gathered}
$$

provide the same finite result. Note that, in the first limit, the l'Hôpital's rule has been applied, together with the Fundamental Theorem of Calculus. Thus, $b=2 / 3$ ensures the differentiability of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=0$, hence in its domain.

