OpenCourseWare

CALCULUS - EVALUATION TEST 14 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Knowing that the recursive sequence defined as

$$
a_{1}=0 ; \quad a_{n+1}=\sqrt{\frac{2+3 a_{n}}{2}}, \quad \text { with } n \in \mathbb{N}
$$

is bounded, prove that it is increasing and calculate $\lim _{n \rightarrow \infty} a_{n}$.

SOLUTION

Let us prove that the sequence is monotone increasing by the principle of induction. For $n=1$, we have $a_{2}=1 \geq 0=a_{1}$. Then, supposing that $a_{k-1} \leq a_{k}$ for $n=k \in \mathbb{N}$ (with $k \geq 2$), we can write

$$
\frac{3}{2} a_{k-1} \leq \frac{3}{2} a_{k} \Longrightarrow 1+\frac{3}{2} a_{k-1} \leq 1+\frac{3}{2} a_{k} \Longrightarrow \sqrt{\frac{2+3 a_{k-1}}{2}} \leq \sqrt{\frac{2+3 a_{k}}{2}} \Longrightarrow a_{k} \leq a_{k+1}
$$

which proves the statement. Thus, since the sequence is bounded and monotone, it is also convergent, namely $\lim _{n \rightarrow \infty} a_{n}=L \in \mathbb{R}$. Now, as $n \rightarrow \infty$ in both sides of the recursive formula, we get

$$
\mathrm{L}=\sqrt{1+\frac{3}{2} \mathrm{~L}}
$$

namely $L=-1 / 2$ or $L=2$. As the sequence is increasing, the value of the limit must be $\mathrm{L}=2$.

Problem 2. Given $n \in \mathbb{N}$, consider

$$
f(x)=\left\{\begin{array}{cl}
-\arctan \left(\ln \left(x^{2 n}\right)\right), & \text { if } x \neq 0 \\
\pi / 2, & \text { if } x=0
\end{array}\right.
$$

(a) Study the continuity and differentiability of $f(x)$.
(b) Find the intervals where $f(x)$ is increasing.

SOLUTION

(a) First, for all $x \in \mathbb{R}$, with $x \neq 0$, the function is continuous and differentiable as given in terms of continuous and differentiable elementary functions. On the other hand, $f(x)$ is also continuous at $x=0$ since $f(0)=\pi / 2$ and we have

$$
\lim _{x \rightarrow 0} f(x)=-\arctan \left(\ln \left(0^{+}\right)\right)=-\arctan (-\infty)=\pi / 2
$$

In addition, we have

$$
\begin{aligned}
& f_{+}^{\prime}(0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}}-\frac{2 n}{x\left(1+\ln ^{2}\left(x^{2 n}\right)\right)}=-\infty, \\
& f_{-}^{\prime}(0)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}}-\frac{2 n}{x\left(1+\ln ^{2}\left(x^{2 n}\right)\right)}=+\infty,
\end{aligned}
$$

hence the function is not differentiable at $x=0$.
(b) Observing that

$$
f^{\prime}(x)=-\frac{2 n}{x\left(1+\ln ^{2}\left(x^{2 n}\right)\right)}
$$

for $x \neq 0$, we can conclude that $f(x)$ is increasing for $x \in(-\infty, 0)$ (where $\left.f^{\prime}(x)>0\right)$ and $f(x)$ is decreasing for $x \in(0,+\infty)$ (where $\left.f^{\prime}(x)<0\right)$.

Problem 3. Let $n \in \mathbb{N}$. Then, calculate

$$
\lim _{x \rightarrow 0} \frac{x \int_{0}^{x} e^{t^{2}} d t}{\int_{0}^{x} e^{t^{2}} \sin (t) d t} ; \quad \quad \lim _{x \rightarrow 0} \frac{e^{x}-1-x-\frac{x^{2}}{2!}-\ldots-\frac{x^{n}}{n!}}{x^{n+1}}
$$

SOLUTION

Regarding the first limit, by applying the l'Hôpital's rule twice, we get

$$
\lim _{x \rightarrow 0} \frac{x \int_{0}^{x} e^{t^{2}} d t}{\int_{0}^{x} e^{t^{2}} \sin (t) d t}=\lim _{x \rightarrow 0} \frac{x e^{x^{2}}+\int_{0}^{x} e^{t^{2}} d t}{e^{x^{2}} \sin (x)}=\lim _{x \rightarrow 0} \frac{2 e^{x^{2}}+2 x^{2} e^{x^{2}}}{e^{x^{2}} \cos (x)+2 x e^{x^{2}} \sin (x)}=2
$$

where the Fundamental Theorem of Calculus has been used in order to calculate the derivatives of the involved integral functions. On the other hand, for $n \in \mathbb{N}$, we can write

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\frac{x^{n+1}}{(n+1)!}+o\left(x^{n+1}\right)
$$

Hence, regarding the second limit, we get

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x-\frac{x^{2}}{2!}-\ldots-\frac{x^{n}}{n!}}{x^{n+1}}=\lim _{x \rightarrow 0} \frac{\frac{x^{n+1}}{(n+1)!}+o\left(x^{n+1}\right)}{x^{n+1}}=\frac{1}{(n+1)!}
$$

Problem 4. Let $G: \mathbb{R} \backslash\{0\} \longrightarrow \mathbb{R}$ be defined by $G(x)=\int_{1 / x}^{x^{2}+x} \frac{1}{2+t^{2}} d t$.
(a) Study the continuity and differentiability of $G(x)$.
(b) Find the function $\mathrm{G}^{\prime}(x)$.
(c) Calculate the indefinite integral

$$
\int \frac{1}{2+t^{2}} d t
$$

and use the result to determine the value of $\lim _{x \rightarrow+\infty} G(x)$.

SOLUTION

(a) Let $f(t)=1 /\left(2+t^{2}\right)$. Then, thanks to the Fundamental Theorem of Calculus, the function $G(x)$ is continuous and differentiable since $f(t)$ is continuous, and both functions $x^{2}+x$ and $1 / x$ are differentiable for all $x \neq 0$.
(b) By the Fundamental Theorem of Calculus and the chain rule, we get

$$
\mathrm{G}^{\prime}(x)=\frac{2 x+1}{2+\left(x^{2}+x\right)^{2}}+\frac{1}{2+(1 / x)^{2}} \frac{1}{x^{2}}=\frac{2 x+1}{2+\left(x^{2}+x\right)^{2}}+\frac{1}{1+2 x^{2}}
$$

(c) A direct integration yields

$$
\int \frac{1}{2+\mathrm{t}^{2}} \mathrm{dt}=\frac{1}{\sqrt{2}} \arctan \left(\frac{\mathrm{t}}{\sqrt{2}}\right)+\mathrm{k}
$$

with $k \in \mathbb{R}$. Thus, we have

$$
G(x)=\frac{1}{\sqrt{2}} \arctan \left(\frac{x^{2}+x}{\sqrt{2}}\right)-\frac{1}{\sqrt{2}} \arctan \left(\frac{1}{\sqrt{2} x}\right) .
$$

Hence

$$
\lim _{x \rightarrow+\infty} G(x)=\frac{\pi}{2 \sqrt{2}}
$$

Problem 5. Calculate $\int \ln ^{2}(x) d x$.

SOLUTION

Integrating by parts twice, we get

$$
\int \ln ^{2}(x) d x=x \ln ^{2}(x)-2 \int \ln (x) d x=x \ln ^{2}(x)-2\left[x \ln (x)-\int d x\right] .
$$

Hence

$$
\int \ln ^{2}(x) d x=x \ln ^{2}(x)-2 x \ln (x)+2 x+k
$$

with $k \in \mathbb{R}$.

