OpenCourseWare

CALCULUS - EVALUATION TEST 15 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Study the convergence of the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

where $\left(a_{n}\right)_{n \in \mathbb{N}}$ is the recursive sequence defined as

$$
a_{1}=1 ; \quad a_{n+1}=-\frac{a_{n}}{2}\left(1+\frac{1}{n}\right)^{n / 2}, \quad \text { with } n \in \mathbb{N} .
$$

SOLUTION

By applying the ratio test, we get

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{2}\left(1+\frac{1}{n}\right)^{n / 2} \longrightarrow \frac{1}{2} \sqrt{e} \quad \text { as } n \rightarrow \infty,
$$

where a known result has been taken into account. Then, observing that $2<e<3$ implies $\sqrt{2}<\sqrt{e}<\sqrt{3}<2$, we can conclude that $\sqrt{e} / 2<1$. Hence, the given series is (absolutely) convergent.

Problem 2. Find the exact number of real solutions of the equation

$$
e^{x}=a x
$$

depending on the value of $a \in \mathbb{R}$.

SOLUTION

Let $f(x)=e^{x}-a x$, whose first derivative is equal to $f^{\prime}(x)=e^{x}-a$. Now, we can distinguish three different cases.

- Let $a=-|a|<0$. Then, $f^{\prime}(x)>0$ for all $x \in \mathbb{R}$ and the function $f(x)$ is increasing. Moreover, we have

$$
\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty
$$

Thus, the given equation $f(x)=0$ has a unique real solution.

- Let $a=0$. Then, the given equation reads $e^{x}=0$, which has no solution.
- Let $a=|a|>0$. Then, we have

$$
\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty}\left(e^{x}-|a| x\right)=+\infty
$$

In addition, the only critical point for $f(x)$ is equal to $x^{*}=\ln |a|$ (which is the solution of $f^{\prime}(x)=0$), yielding $f\left(x^{*}\right)=|a|(1-\ln |a|)$. Hence, if $f\left(x^{*}\right)>0$ (namely, if $0<a<e$) the given equation has no solution, if $f\left(x^{*}\right)=0$ (namely, if $a=e$) the equation has a unique real solution, if $f\left(x^{*}\right)<0$ (namely, if $a>e$) the equation has two real solutions.

Problem 3. Consider the function

$$
f(x)=\left(36+x^{3}\right)^{-1 / 2}, \quad \text { with } x \neq-6^{2 / 3}
$$

(a) Write the Taylor polynomial of degree 6 about $a=0$ for $f(x)$.
(b) Find a rational number that approximates $f(-1)$ within an error smaller than 10^{-2}.

SOLUTION

(a) Noting that

$$
f(x)=\left(6^{2}+x^{3}\right)^{-1 / 2}=\frac{1}{6}\left(1+\frac{x^{3}}{6^{2}}\right)^{-1 / 2}
$$

we can write

$$
f(x)=\frac{1}{6}\left(1-\frac{x^{3}}{72}+\frac{x^{6}}{3456}+o\left(x^{6}\right)\right)=\frac{1}{6}-\frac{x^{3}}{432}+\frac{x^{6}}{20736}+o\left(x^{6}\right)
$$

as $x \rightarrow 0$.
(b) It can be checked that the rational number

$$
\frac{1}{6}+\frac{1}{432}
$$

is an approximation of $f(-1)$ within an error smaller than 10^{-2}.

Problem 4. Let $f, F:[0,7] \longrightarrow \mathbb{R}$ be defined as

$$
f(x)=\left\{\begin{array}{cl}
1, & \text { if } 0 \leq x \leq 4, \\
5-x, & \text { if } 4<x \leq 5, \\
-1, & \text { if } 5<x \leq 7,
\end{array} \quad F(x)=\int_{0}^{x} f(t) d t\right.
$$

(a) Calculate the values $F(4), F(5)$, and $F(7)$.
(b) Study the continuity and differentiability of $F(x)$.

SOLUTION

(a) Let $0 \leq x \leq 4$. Then, we have

$$
F(x)=\int_{0}^{x} f(t) d t=\int_{0}^{x} 1 d t=x .
$$

Hence, $F(4)=4$. Now, let $4<x \leq 5$. In this case, we can write

$$
F(x)=\int_{0}^{4} f(t) d t+\int_{4}^{x} f(t) d t=F(4)+\int_{4}^{x}(5-t) d t=\frac{9}{2}-\frac{1}{2}(x-5)^{2} .
$$

Hence, $F(5)=9 / 2$. Finally, for $5<x \leq 7$, we get

$$
F(x)=\int_{0}^{5} f(t) d t+\int_{5}^{x} f(t) d t=F(5)+\int_{5}^{x}(-1) d t=\frac{19}{2}-x .
$$

Hence, $F(7)=5 / 2$.
(b) By the Fundamental Theorem of Calculus, we can deduce that $F(x)$ is continuous for all $x \in[0,7]$ (as f is integrable) and $F(x)$ is differentiable for all $x \in[0,7]$, with $x \neq 5$ (as f is continuous). Indeed, note that $F^{\prime}(5)$ does not exist.

Problem 5. Calculate

$$
\lim _{x \rightarrow 0} \frac{\sin (x) \cos (x)-\arctan (x)}{\ln \left(1+x^{3}\right)}
$$

by using appropriate Taylor polynomials.

SOLUTION

By using appropriate Taylor polynomials about $a=0$ for the involved functions, we can write

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (x) \cos (x)-\arctan (x)}{\ln \left(1+x^{3}\right)} & =\lim _{x \rightarrow 0} \frac{\left(x-\frac{x^{3}}{6}+o\left(x^{3}\right)\right)\left(1-\frac{x^{2}}{2}+o\left(x^{2}\right)\right)-\left(x-\frac{x^{3}}{3}+o\left(x^{3}\right)\right)}{x^{3}+o\left(x^{3}\right)} \\
& =\lim _{x \rightarrow 0} \frac{x-\frac{2}{3} x^{3}-x+\frac{x^{3}}{3}+o\left(x^{3}\right)}{x^{3}+o\left(x^{3}\right)}=-\frac{1}{3},
\end{aligned}
$$

where all powers of x up to 3 have been retained.

Problem 6. Calculate $\int x \arctan (x) d x$.

SOLUTION

We can write

$$
\begin{aligned}
\int x \arctan (x) d x & =\frac{x^{2}}{2} \arctan (x)-\frac{1}{2} \int \frac{x^{2}}{1+x^{2}} d x=\frac{x^{2}}{2} \arctan (x)-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x \\
& =\frac{x^{2}}{2} \arctan (x)-\frac{x}{2}+\frac{1}{2} \arctan (x)+k
\end{aligned}
$$

with $k \in \mathbb{R}$. Note that the first identity has been obtained upon integration by parts.

