OpenCourseWare

CALCULUS - EVALUATION TEST 15

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Study the convergence of the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

where $\left(a_{n}\right)_{n \in \mathbb{N}}$ is the recursive sequence defined as

$$
a_{1}=1 ; \quad a_{n+1}=-\frac{a_{n}}{2}\left(1+\frac{1}{n}\right)^{n / 2}, \quad \text { with } n \in \mathbb{N}
$$

Problem 2. Find the exact number of real solutions of the equation

$$
e^{x}=a x,
$$

depending on the value of $a \in \mathbb{R}$.

Problem 3. Consider the function

$$
f(x)=\left(36+x^{3}\right)^{-1 / 2}, \quad \text { with } x \neq-6^{2 / 3}
$$

(a) Write the Taylor polynomial of degree 6 about $a=0$ for $f(x)$.
(b) Find a rational number that approximates $f(-1)$ within an error smaller than 10^{-2}.

Problem 4. Let $f, F:[0,7] \longrightarrow \mathbb{R}$ be defined as

$$
f(x)=\left\{\begin{array}{cl}
1, & \text { if } 0 \leq x \leq 4, \\
5-x, & \text { if } 4<x \leq 5, \\
-1, & \text { if } 5<x \leq 7,
\end{array} \quad F(x)=\int_{0}^{x} f(t) d t\right.
$$

(a) Calculate the values $F(4), F(5)$, and $F(7)$.
(b) Study the continuity and differentiability of $F(x)$.

Problem 5. Calculate

$$
\lim _{x \rightarrow 0} \frac{\sin (x) \cos (x)-\arctan (x)}{\ln \left(1+x^{3}\right)}
$$

by using appropriate Taylor polynomials.

Problem 6. Calculate $\int x \arctan (x) d x$.

