OpenCourseWare

CALCULUS - EVALUATION TEST 1 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of real numbers defined by

$$
\begin{aligned}
& a_{n}=-4+\frac{a_{n-1}}{3}, \quad \text { with } n \geq 2 \\
& a_{1}=0
\end{aligned}
$$

- Prove that the sequence is decreasing.
- Prove that the sequence is bounded.
- Calculate $\lim _{n \rightarrow \infty} a_{n}$.

SOLUTION

Observe that

$$
a_{2}=-4, \quad a_{3}=-4-\frac{4}{3}, \quad a_{4}=-4-\frac{4}{3}-\frac{4}{9}, \quad \ldots,
$$

hence, for all $n \geq 2$, we have

$$
\begin{equation*}
a_{n}=-4-\frac{4}{3}-\ldots-\frac{4}{3^{n-2}} . \tag{1}
\end{equation*}
$$

Then

$$
a_{n}-a_{n-1}=-\frac{4}{3^{n-2}}<0
$$

namely the sequence is (strictly) decreasing. In addition, using eq.(1), we can write a_{n} as the geometric sum

$$
\begin{equation*}
a_{n}=-4 \sum_{k=0}^{n-2}\left(\frac{1}{3}\right)^{k}=-4 \frac{1-\left(\frac{1}{3}\right)^{n-1}}{1-\frac{1}{3}}=-6\left\{1-\left(\frac{1}{3}\right)^{n-1}\right\} \tag{2}
\end{equation*}
$$

where a known result has been used. From eq.(2), we deduce that $\left|a_{n}\right| \leq 6$ for all $n \geq 2$, hence the sequence is bounded. In addition, we get

$$
\lim _{n \rightarrow \infty} a_{n}=-6
$$

Problem 2. Find all values of the parameter $\alpha \in \mathbb{R}$ such that the series

$$
\sum_{n=0}^{\infty} \frac{(\alpha-2)^{n}}{n^{2}+1}
$$

is convergent.

SOLUTION

Given $a_{n}=(\alpha-2)^{n} /\left(n^{2}+1\right)$, note that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{(\alpha-2)^{n+1}}{(n+1)^{2}+1} \frac{n^{2}+1}{(\alpha-2)^{n}}\right|=|\alpha-2| \frac{n^{2}+1}{n^{2}+2 n+2} \longrightarrow|\alpha-2| \quad \text { as } n \rightarrow \infty .
$$

Hence, thanks to the ratio test, the series is convergent if $|\alpha-2|<1$, namely if $1<\alpha<3$ (if $\alpha>3$ or $\alpha<1$ the series diverges). If $\alpha=3$ the series is given by

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}
$$

which is convergent since $1 /\left(n^{2}+1\right)<1 / n^{2}$, for all $n \geq 1$, and the series with general term equal to $1 / n^{2}$ is convergent (by the comparison test). On the other hand, if $\alpha=1$ the series is given by

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

which is convergent by the Leibniz test (indeed, it is an alternating series, where $1 /\left(n^{2}+1\right)$ is positive, decreasing, and tending to zero as $n \rightarrow \infty$).

Problem 3. Consider the function

$$
f(x)= \begin{cases}-x^{2}-7 \cos \left(\frac{\pi}{2} x\right) & \text { if } x>2 \\ a(x+1)+b & \text { if }-1<x \leq 2 \\ x^{3}-12 x+5 & \text { if } x \leq-1\end{cases}
$$

where a and b are real numbers.

- Find the values of a and b such that $f(x)$ is continuous in \mathbb{R}.
- Calculate (if any) the local maxima and minima of $f(x)$ for $x<-1$.

SOLUTION

The function $f(x)$ is continuous for $x \in(-\infty,-1) \cup(-1,2) \cup(2,+\infty)$ as defined in terms of continuous elementary functions. The continuity at $x=-1$ is ensured by imposing

$$
f(-1)=\lim _{x \rightarrow-1^{-}}\left[x^{3}-12 x+5\right]=\lim _{x \rightarrow-1^{+}}[a(x+1)+b]
$$

which requires that $b=16$. On the other hand, the continuity at $x=2$ is guaranteed by imposing

$$
f(2)=\lim _{x \rightarrow 2^{-}}[a(x+1)+b]=\lim _{x \rightarrow 2^{+}}\left[-x^{2}-7 \cos \left(\frac{\pi}{2} x\right)\right],
$$

which implies $3 a+b=3$, namely $a=-13 / 3$. Thus, the calculated values for a and b make $f(x)$ continuous in \mathbb{R}. Now, the only critical point for $f(x)$ in the interval $(-\infty,-1)$ is obtained by imposing

$$
f^{\prime}(x)=3 x^{2}-12=0 \quad \Longrightarrow \quad x=-2
$$

which is a point of local maximum (since $f^{\prime \prime}(-2)=-12<0$) where $f(-2)=21$. The function $f(x)$ does not have any local minimum for $x<-1$.

Problem 4. Approximate the value

$$
\ln \left(\frac{4}{3}\right)
$$

by using a polynomial of degree 3 and find an appropriate upper bound for the involved error.

SOLUTION

Note that

$$
\ln \left(\frac{4}{3}\right)=\ln \left(1+\frac{1}{3}\right)
$$

can be obtained by evaluating the function $f(x)=\ln (1+x)$ at $x=1 / 3$. Such function can be expressed by the Taylor Theorem as

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+R_{3}(x)
$$

where the remainder $R_{3}(x)$ can be written as

$$
R_{3}(x)=\frac{f^{(4)}(c)}{4!} x^{4},
$$

with $f^{(4)}(x)=-6(1+x)^{-4}$ and $c \in(0, x)$ when $x>0$. Then, we can approximate the desired value as

$$
\ln \left(\frac{4}{3}\right) \approx \frac{1}{3}-\frac{1}{18}+\frac{1}{81}=\frac{47}{162} \approx 0.2901
$$

and find an upper bound for the involved error as

$$
\left|R_{3}\left(\frac{1}{3}\right)\right|=\left|\frac{-6}{(1+c)^{4}} \frac{(1 / 3)^{4}}{4!}\right|=\frac{(1 / 3)^{4}}{4(1+c)^{4}} \leq \frac{(1 / 3)^{4}}{4} \approx 0.003
$$

Note that the previous inequality holds since $c \in(0,1 / 3)$, which gives $c+1 \in(1,4 / 3)$, ensuring that $(1+c)^{-4}<1$.

