OpenCourseWare

CALCULUS - EVALUATION TEST 1

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of real numbers defined by

$$
\begin{aligned}
& a_{n}=-4+\frac{a_{n-1}}{3}, \quad \text { with } n \geq 2 \\
& a_{1}=0
\end{aligned}
$$

- Prove that the sequence is decreasing.
- Prove that the sequence is bounded.
- Calculate $\lim _{n \rightarrow \infty} a_{n}$.

Problem 2. Find all values of the parameter $\alpha \in \mathbb{R}$ such that the series

$$
\sum_{n=0}^{\infty} \frac{(\alpha-2)^{n}}{n^{2}+1}
$$

is convergent.

Problem 3. Consider the function

$$
f(x)= \begin{cases}-x^{2}-7 \cos \left(\frac{\pi}{2} x\right) & \text { if } x>2 \\ a(x+1)+b & \text { if }-1<x \leq 2 \\ x^{3}-12 x+5 & \text { if } x \leq-1\end{cases}
$$

where a and b are real numbers.

- Find the values of a and b such that $f(x)$ is continuous in \mathbb{R}.
- Calculate (if any) the local maxima and minima of $f(x)$ for $x<-1$.

Problem 4. Approximate the value

$$
\ln \left(\frac{4}{3}\right)
$$

by using a polynomial of degree 3 and find an appropriate upper bound for the involved error.

