OpenCourseWare

CALCULUS - EVALUATION TEST 2 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the monotone increasing sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined by the following recursive formula

$$
\begin{aligned}
& a_{1}=0 \\
& a_{n+1}=\sqrt{4 a_{n}+5}, \quad \text { with } n \geq 1
\end{aligned}
$$

Prove that the sequence is bounded and calculate $\lim _{n \rightarrow \infty} a_{n}$.

SOLUTION

Let us suppose that the sequence has a finite limit, say $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$. Then, as $n \rightarrow \infty$ in both sides of the recursive formula, we have

$$
a=\sqrt{4 a+5} \Longrightarrow a^{2}=4 a+5 \quad \Longrightarrow \quad a=-1,5
$$

where the value $a=-1$ must be discarded, since the sequence is increasing with positive terms. Thus, $a=5$ is the only candidate to be the value of the limit.

Now, let us prove by the principle of induction that the sequence is bounded above by 5 , namely $0 \leq a_{n} \leq 5$ for all $n \in \mathbb{N}$. First, such property holds for $n=1$, namely $0 \leq a_{1}=0 \leq 5$. Then, assuming that $0 \leq a_{k} \leq 5$ for $n=k \in \mathbb{N}$, we get (for $n=k+1$)

$$
0 \leq a_{k+1}=\sqrt{4 a_{k}+5} \leq \sqrt{4 \cdot 5+5}=5
$$

Hence, the sequence is bounded and has a finite limit thanks to its increasing behavior. As a consequence, the desired value of the limit is $a=5$, as previously calculated.

Problem 2. Find all values of the parameter $x \in \mathbb{R}$ such that the series

$$
\sum_{k=1}^{\infty} \frac{3^{2 k} x^{3 k}}{(2 k+1) 5^{k}}
$$

is convergent.

SOLUTION

Let $a_{k}=\frac{3^{2 k} x^{3 k}}{(2 k+1) 5^{k}}$. Then, we have

$$
\left|\frac{a_{k+1}}{a_{k}}\right|=\frac{9}{5}|x|^{3} \frac{2 k+1}{2 k+3} \quad \longrightarrow \quad \frac{9}{5}|x|^{3} \quad \text { as } k \rightarrow \infty .
$$

Thus, thanks to the ratio test, the series converges if

$$
\frac{9}{5}|x|^{3}<1 \quad \Longleftrightarrow \quad|x|^{3}<\frac{5}{9} \quad \Longleftrightarrow \quad x \in\left(-\frac{5^{1 / 3}}{9^{1 / 3}}, \frac{5^{1 / 3}}{9^{1 / 3}}\right)
$$

while it diverges if

$$
\frac{9}{5}|x|^{3}>1 \Longleftrightarrow x \in\left(-\infty,-\frac{5^{1 / 3}}{9^{1 / 3}}\right) \cup\left(\frac{5^{1 / 3}}{9^{1 / 3}},+\infty\right) .
$$

On the other hand, let

$$
\frac{9}{5}|x|^{3}=1 \quad \Longleftrightarrow \quad|x|^{3}=\frac{5}{9} \quad \Longleftrightarrow \quad x^{3}= \pm \frac{5}{9}
$$

Then, for $x^{3}=5 / 9$, the series is

$$
\sum_{k=1}^{\infty} a_{k}=\sum_{k=1}^{\infty} \frac{1}{2 k+1}
$$

which diverges, while for $\chi^{3}=-5 / 9$ the series is

$$
\sum_{k=1}^{\infty} a_{k}=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{2 k+1}
$$

which converges by the Leibniz test. Hence, we can conclude that the proposed series is convergent if and only if

$$
x \in\left[-\frac{5^{1 / 3}}{9^{1 / 3}}, \frac{5^{1 / 3}}{9^{1 / 3}}\right) .
$$

Problem 3. Consider the function

$$
F(x)=\int_{0}^{5 x} e^{-7 t^{4}} d t, \quad \text { with } x \in \mathbb{R}
$$

- Prove that $\mathrm{F}(\mathrm{x})$ is odd.
- Prove the existence of the limit $\ell=\lim _{x \rightarrow \infty} F(x)$.
- Prove that the function $F: \mathbb{R} \rightarrow(-\ell, \ell)$ is monotone increasing.
- Calculate $\left(F^{-1}\right)^{\prime}(0)$.
- Calculate $\lim _{x \rightarrow 0} \frac{5 x-F(x)}{x^{5}}$.

SOLUTION

- The function $\mathrm{F}(\mathrm{x})$ is odd since

$$
F(-x)=\int_{0}^{-5 x} e^{-7 t^{4}} d t=-\int_{0}^{5 x} e^{-7 u^{4}} d u=-F(x)
$$

where the second identity is obtained by means of the change of variable $u=-t$.

- First, note that

$$
\ell=\lim _{x \rightarrow \infty} F(x)=\lim _{x \rightarrow \infty} \int_{0}^{5 x} e^{-7 t^{4}} d t=\int_{0}^{\infty} e^{-7 t^{4}} d t
$$

is an improper integral of the first kind (of a positive function). Then, we have

$$
\lim _{t \rightarrow \infty} \frac{e^{-7 t^{4}}}{e^{-t}}=\lim _{t \rightarrow \infty} e^{-7 t^{4}+t}=0
$$

Thus, since $\int_{0}^{\infty} e^{-t} d t$ converges, by the limit comparison test we can conclude that also $\int_{0}^{\infty} e^{-7 t^{4}} \mathrm{dt}$ converges, namely the limit ℓ exists.

- The function $F(x)$ is increasing as

$$
F^{\prime}(x)=5 e^{-7(5 x)^{4}}>0
$$

for all $x \in \mathbb{R}$. Note that $F^{\prime}(x)$ has been calculated by means of the Fundamental Theorem of Calculus.

- Thanks to the result in the previous item, $\mathrm{F}^{-1}(\mathrm{x})$ exists. Moreover, we have

$$
\left(F^{-1}\right)^{\prime}(x)=\frac{1}{F^{\prime}\left(F^{-1}(x)\right)} \quad \Longrightarrow \quad\left(F^{-1}\right)^{\prime}(0)=\frac{1}{F^{\prime}\left(F^{-1}(0)\right)}=\frac{1}{F^{\prime}(0)}=\frac{1}{5}
$$

where the last-but-one identity holds since $F(0)=0$, while the last one is obtained from the expression for $F^{\prime}(x)$ calculated before.

- By applying the l'Hôpital's rule twice, we get

$$
\lim _{x \rightarrow 0} \frac{5 x-F(x)}{x^{5}}=\lim _{x \rightarrow 0} \frac{5-F^{\prime}(x)}{5 x^{4}}=\lim _{x \rightarrow 0} \frac{5-5 e^{-7(5 x)^{4}}}{5 x^{4}}=\lim _{x \rightarrow 0} 7 \cdot 5^{4} e^{-7(5 x)^{4}}=4375 .
$$

Problem 4. Calculate

$$
\int \frac{d x}{(x+1)^{4 / 3}-(x+1)^{2 / 3}}
$$

SOLUTION

Let us apply the change of variable

$$
u=(x+1)^{1 / 3} ; \quad d u=\frac{1}{3}(x+1)^{-2 / 3} d x \Longrightarrow d x=3 u^{2} d u .
$$

Then, the given integral is transformed into

$$
\int \frac{d x}{(x+1)^{4 / 3}-(x+1)^{2 / 3}}=3 \int \frac{u^{2}}{u^{4}-u^{2}} d u=3 \int \frac{d u}{u^{2}-1} .
$$

Now, we can write

$$
\frac{1}{u^{2}-1}=\frac{1}{(u-1)(u+1)}=\frac{1 / 2}{u-1}-\frac{1 / 2}{u+1}
$$

and finally

$$
\int \frac{d u}{u^{2}-1}=\frac{1}{2} \int \frac{d u}{u-1}-\frac{1}{2} \int \frac{d u}{u+1}=\frac{1}{2} \ln |u-1|-\frac{1}{2} \ln |u+1|+c,
$$

where c is an arbitrary constant. Thus, we get

$$
\int \frac{d x}{(x+1)^{4 / 3}-(x+1)^{2 / 3}}=\frac{3}{2} \ln \left|\frac{(x+1)^{1 / 3}-1}{(x+1)^{1 / 3}+1}\right|+c
$$

with $c \in \mathbb{R}$.

