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CALCULUS – EVALUATION TEST 3 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Find all values of the parameter x ∈ R such that the series

∞∑
k=1

sink(x/3)

k1/5 + k1/6

converges.

SOLUTION

Let ak =
sink(x/3)

k1/5 + k1/6
. Then, we have

∣∣∣∣ak+1

ak

∣∣∣∣ = | sin(x/3)|
k1/5 + k1/6

(k+ 1)1/5 + (k+ 1)1/6
−→ | sin(x/3)| as k → ∞ .

Thus, thanks to the ratio test, the series converges if

| sin(x/3)| < 1 ⇐⇒ ∀ x ∈ R , with
x

3
̸= π

2
+ nπ , n = 0, 1, 2, . . . .

Note that the series would be divergent for those values of x satisfying | sin(x/3)| > 1 ,
which never holds. On the other hand, if

sin(x/3) = 1 ⇐⇒ x

3
=

π

2
+ jπ , j = 0, 2, 4, . . . ,



then ak = 1/(k1/5 + k1/6) . In this case, considering bk = 1/k1/5 , we get

lim
k→∞

ak

bk

= 1 > 0 .

Thus, by the limit comparison test, the series diverges since
∑∞

k=1 bk is divergent (both
series have positive terms). Finally, if

sin(x/3) = −1 ⇐⇒ x

3
=

3π

2
+ jπ , j = 0, 2, 4, . . . ,

then ∞∑
k=1

ak =

∞∑
k=1

(−1)k

k1/5 + k1/6
,

which converges thanks to the Leibniz test. Hence, we can conclude that the given series
is convergent for all x ∈ R such that x ̸= 3 (π/2+ jπ) , j = 0, 2, 4, . . . .
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Problem 2. Consider the function f : [−1, 1] −→ R such that

f(x) =

{
e−1/x2 if −1 ≤ x < 0 ,

x if 0 ≤ x ≤ 1 .

• Prove that f(x) is bounded and calculate its image.

• Study the differentiability of f(x) in the interval (−1, 1) .

SOLUTION

In order to prove that f(x) is bounded in [−1, 1], we can prove that f(x) is continuous
in that interval (closed and bounded). Indeed, the function is continuous in [−1, 0)∪ (0, 1]
as defined in terms of continuous functions. Now, let us prove its continuity at x = 0 . We
can write

lim
x→0+

f(x) = lim
x→0+

x = 0 ,

lim
x→0−

f(x) = lim
x→0−

e−1/x2 = 0 ,

hence limx→0 f(x) = f(0) . As a consequence, f(x) is continuous and bounded in [−1, 1] .
Moreover, its image is the interval [0, 1] . Finally, the function f(x) is differentiable for all
x ∈ (−1, 1), with x ̸= 0, as

lim
h→0+

f(0+ h) − f(0)

h
= lim

h→0+

h

h
= 1 ,

lim
h→0−

f(0+ h) − f(0)

h
= lim

h→0−

e−1/h2

h
= 0 .
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Problem 3.

• Approximate the value 7
√

6/5 by using a polynomial of degree 2.

• Find a proper upper bound for the error involved in the previous approximation.

SOLUTION

Note that
7

√
6

5
=

(
1+

1

5

)1/7

can be calculated by evaluating the function f(x) = (1 + x)1/7 at x = 1/5 . Such function
can be expressed, thanks to the Taylor Theorem, as

(1+ x)r = 1+ r x+
1

2
r(r− 1)x2 + R2(x) ,

with r = 1/7 . The previous expression is the sum of a polynomial of degree 2 and the
remainder R2(x) given by

R2(x) =
f
′′′
(c)

3!
x3 ,

where f
′′′
(c) = 78/343 (1 + c)−20/7 and c ∈ (0, x) when x > 0. Thus, we can approximate

the desired value as
7

√
6

5
≈ 1+

1

35
−

3

49

1

25
≈ 1.0261 .

Finally, an upper bound for the involved error at x = 1/5 can be obtained as∣∣∣∣R2

(
1

5

)∣∣∣∣ = 78

343

1

(1+ c)20/7
(1/5)3

3!
<

78

343

(1/5)3

3!
≈ 3 · 10−4 ,

where the inequality holds since c ∈ (0, 1/5), which implies 1/(1+ c)20/7 < 1 .
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Problem 4. Calculate

lim
x→0

(
1

x4
−

1

x7

∫ x

0

sin(3t2)dt
)
.

SOLUTION

The given limit can be expressed as

lim
x→0

x3 − F(x)

x7
, with F(x) =

∫ x

0

sin(3t2)dt .

Thus, by applying the l’Hôpital’s rule and the Fundamental Theorem of Calculus, we get

lim
x→0

x3 − F(x)

x7
= lim

x→0

3x2 − F ′(x)

7x6
= lim

x→0

3x2 − sin(3x2)
7x6

= lim
x→0

3x2 −
[
3x2 − 9/2 x6 + o(x6)

]
7x6

=
9

14
,

where, in the last-but-one identity, the function sin(3x2) has been approximated by the
corresponding Maclaurin polynomial of degree 6.

5



Problem 5. Calculate the definite integral∫ ln
√
2

0

√
e 2t − 1dt .

SOLUTION

By applying the change of variable u =
√
e 2t − 1 (yielding dt = u(u2 + 1)−1du ), we

get ∫ ln
√
2

0

√
e 2t − 1dt =

∫ 1

0

u2

u2 + 1
du =

∫ 1

0

[
1−

1

u2 + 1

]
du

=

[
u− arctan(u)

]1
0

= 1−
π

4
.
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Problem 6. Study the convergence of the family of improper integrals given by

In(λ) =

∫+∞
0

xne−λx dx , with n = 0, 1, 2, . . . ,

where λ > 0 .

SOLUTION

Note that I0(λ) is convergent. In addition, the integration by parts yields

I1(λ) = lim
b→∞

∫b

0

x e−λx dx = lim
b→∞

[
1

λ2
− e−λb

(
1

λ2
+

b

λ

)]
=

1

λ2
,

hence I1(λ) is convergent as well. Now, in order to apply the principle of induction, suppose
that Ik(λ) converges for n = k ∈ N and prove that Ik+1(λ) is also convergent (for n = k+1).
Then, we have

Ik+1(λ) = lim
b→∞

∫b

0

xk+1e−λx dx = lim
b→∞

[
−

bk+1

λ
e−λb +

k+ 1

λ

∫b

0

xke−λx dx

]

=
k+ 1

λ
Ik(λ) ,

using the integration by parts. This means that Ik+1(λ) converges, since Ik(λ) does so
thanks to the induction hypothesis. Hence, we can conclude that all improper integrals
of the given family are convergent for λ > 0 (with n = 0, 1, 2, . . .) .
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