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Problem 1. Consider the monotone decreasing sequence (an)n∈N defined by the recursive
formula

a1 = 1 ;

an = −8+
an−1

3
, with n ≥ 2 .

• Prove that the sequence is bounded.

• Calculate lim
n→∞ an .

SOLUTION

Let us suppose that the sequence has a finite limit, say limn→∞ an = a ∈ R . Then, as
n → ∞ in both sides of the recursive formula, we get

a = −8+
a

3
=⇒ a = −12 .

Hence, if the sequence converges, a = −12 must be the value of its limit.

Now, let us prove by the principle of induction that the sequence is bounded, namely
−12 ≤ an ≤ 1 for all n ∈ N . This property holds for n = 1, as −12 ≤ a1 = 1 ≤ 1 . Then,
assuming that −12 ≤ ak ≤ 1 for n = k ∈ N, we get (for n = k+ 1)

−12 = −8−
12

3
≤ ak+1 = −8+

ak

3
≤ −8+

1

3
≤ 1 .

Thus, the sequence is bounded, hence it has a finite limit thanks to its decreasing behavior.
As a consequence, the desired limit value is a = −12, as previously calculated.



Problem 2. Find all values of the parameter α ∈ R such that the series

∞∑
k=1

(−1)k
3k α2k

k+ 1

is convergent.

SOLUTION

Let ak be the general term of the given series. Then∣∣∣∣ak+1

ak

∣∣∣∣ =

∣∣∣∣(−1)k+1 3k+1 α2k+2

k+ 2

k+ 1

(−1)k 3k α2k

∣∣∣∣ = 3α2 k+ 1

k+ 2
−→ 3α2 as k → ∞ .

Hence, thanks to the ratio test, we can say that the series converges if 3α2 < 1, namely
for −

√
3/3 < α <

√
3/3 (it diverges for α >

√
3/3 or α < −

√
3/3). On the other hand, if

α = ±
√
3/3, the series is ∞∑

k=1

(−1)k

k+ 1
,

which is convergent by the Leibniz test (indeed, it is an alternating series, where 1/(k+ 1)
is positive, decreasing, and tending to zero as k → ∞).
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Problem 3. Approximate the value
3
√
1.1

by a polynomial of degree 2 and find an appropriate upper bound for the involved error.

SOLUTION

Note that
3
√
1.1 = (1+ 0.1)1/3

can be calculated by evaluating the function f(x) = (1 + x)1/3 at x = 0.1. Thanks to the
Taylor Theorem, such function can be expressed as

(1+ x)1/3 = 1+
1

3
x+

1
3

(
1
3
− 1

)
2

x2 + R2(x)

= 1+
1

3
x−

1

9
x2 + R2(x) ,

where the remainder R2(x) is

R2(x) =
f
′′′
(c)

3!
x3 ,

with
f
′′′
(c) =

10

27
(1+ c)−8/3 , for c ∈ (0, x) when x > 0 .

Thus, we can approximate the desired value as

3
√
1.1 ≈ 1+

0.1

3
−

(0.1)2

9
≈ 1.03222

and find an upper bound for the involved error as

|R2 (0.1)| =

∣∣∣∣ 10

27 · 3!
1

(1+ c)8/3
(0.1)3

∣∣∣∣ <
10

27 · 6
(0.1)3 ≈ 6 · 10−5 ,

where the inequality is obtained recalling that c ∈ (0, 0.1).
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Problem 4. Given the function
f(x) = xx ,

find the exact number of real solutions of the equation f(x) = 2 in the interval [1,+∞).

SOLUTION

In the interval [1,+∞), the function f(x) is continuous and differentiable, since it is
defined as

f(x) = xx = e x ln(x) .

On the other hand, the given equation can be written as

f(x) − 2 = 0 ⇐⇒ F(x) = 0 ,

where F(x) = f(x) − 2 is also continuous and differentiable in [1,+∞), with

F ′(x) = e x ln(x) (ln(x) + 1) > 0 .

Thus, F(x) is increasing in [1,+∞), F(1) = −1 < 0, and limx→∞ F(x) = +∞ . Hence, we
can conclude that the given equation has a unique real solution in the indicated interval.
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