OpenCourseWare

CALCULUS - EVALUATION TEST 4 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the monotone decreasing sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined by the recursive formula

$$
\begin{aligned}
& a_{1}=1 \\
& a_{n}=-8+\frac{a_{n-1}}{3}, \quad \text { with } n \geq 2
\end{aligned}
$$

- Prove that the sequence is bounded.
- Calculate $\lim _{n \rightarrow \infty} a_{n}$.

SOLUTION

Let us suppose that the sequence has a finite limit, say $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$. Then, as $n \rightarrow \infty$ in both sides of the recursive formula, we get

$$
a=-8+\frac{a}{3} \quad \Longrightarrow \quad a=-12
$$

Hence, if the sequence converges, $a=-12$ must be the value of its limit.
Now, let us prove by the principle of induction that the sequence is bounded, namely $-12 \leq a_{n} \leq 1$ for all $n \in \mathbb{N}$. This property holds for $n=1$, as $-12 \leq a_{1}=1 \leq 1$. Then, assuming that $-12 \leq a_{k} \leq 1$ for $n=k \in \mathbb{N}$, we get (for $n=k+1$)

$$
-12=-8-\frac{12}{3} \leq a_{k+1}=-8+\frac{a_{k}}{3} \leq-8+\frac{1}{3} \leq 1
$$

Thus, the sequence is bounded, hence it has a finite limit thanks to its decreasing behavior. As a consequence, the desired limit value is $a=-12$, as previously calculated.

Problem 2. Find all values of the parameter $\alpha \in \mathbb{R}$ such that the series

$$
\sum_{k=1}^{\infty}(-1)^{k} \frac{3^{k} \alpha^{2 k}}{k+1}
$$

is convergent.

SOLUTION

Let a_{k} be the general term of the given series. Then

$$
\left|\frac{a_{k+1}}{a_{k}}\right|=\left|\frac{(-1)^{k+1} 3^{k+1} \alpha^{2 k+2}}{k+2} \frac{k+1}{(-1)^{k} 3^{k} \alpha^{2 k}}\right|=3 \alpha^{2} \frac{k+1}{k+2} \longrightarrow 3 \alpha^{2} \quad \text { as } k \rightarrow \infty .
$$

Hence, thanks to the ratio test, we can say that the series converges if $3 \alpha^{2}<1$, namely for $-\sqrt{3} / 3<\alpha<\sqrt{3} / 3$ (it diverges for $\alpha>\sqrt{3} / 3$ or $\alpha<-\sqrt{3} / 3$). On the other hand, if $\alpha= \pm \sqrt{3} / 3$, the series is

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k+1}
$$

which is convergent by the Leibniz test (indeed, it is an alternating series, where $1 /(k+1)$ is positive, decreasing, and tending to zero as $k \rightarrow \infty$).

Problem 3. Approximate the value

$$
\sqrt[3]{1.1}
$$

by a polynomial of degree 2 and find an appropriate upper bound for the involved error.

SOLUTION

Note that

$$
\sqrt[3]{1.1}=(1+0.1)^{1 / 3}
$$

can be calculated by evaluating the function $f(x)=(1+x)^{1 / 3}$ at $x=0.1$. Thanks to the Taylor Theorem, such function can be expressed as

$$
\begin{aligned}
(1+x)^{1 / 3} & =1+\frac{1}{3} x+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{2} x^{2}+R_{2}(x) \\
& =1+\frac{1}{3} x-\frac{1}{9} x^{2}+R_{2}(x)
\end{aligned}
$$

where the remainder $R_{2}(x)$ is

$$
R_{2}(x)=\frac{f^{\prime \prime \prime}(c)}{3!} x^{3},
$$

with

$$
f^{\prime \prime \prime}(c)=\frac{10}{27}(1+c)^{-8 / 3}, \quad \text { for } c \in(0, x) \text { when } x>0
$$

Thus, we can approximate the desired value as

$$
\sqrt[3]{1.1} \approx 1+\frac{0.1}{3}-\frac{(0.1)^{2}}{9} \approx 1.03222
$$

and find an upper bound for the involved error as

$$
\left|R_{2}(0.1)\right|=\left|\frac{10}{27 \cdot 3!} \frac{1}{(1+c)^{8 / 3}}(0.1)^{3}\right|<\frac{10}{27 \cdot 6}(0.1)^{3} \approx 6 \cdot 10^{-5}
$$

where the inequality is obtained recalling that $c \in(0,0.1)$.

Problem 4. Given the function

$$
f(x)=x^{x},
$$

find the exact number of real solutions of the equation $f(x)=2$ in the interval $[1,+\infty)$.

SOLUTION

In the interval $[1,+\infty)$, the function $f(x)$ is continuous and differentiable, since it is defined as

$$
f(x)=x^{x}=e^{x \ln (x)}
$$

On the other hand, the given equation can be written as

$$
f(x)-2=0 \Longleftrightarrow F(x)=0
$$

where $F(x)=f(x)-2$ is also continuous and differentiable in $[1,+\infty)$, with

$$
F^{\prime}(x)=e^{x \ln (x)}(\ln (x)+1)>0
$$

Thus, $F(x)$ is increasing in $[1,+\infty), F(1)=-1<0$, and $\lim _{x \rightarrow \infty} F(x)=+\infty$. Hence, we can conclude that the given equation has a unique real solution in the indicated interval.

