OpenCourseWare

CALCULUS - EVALUATION TEST 4

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the monotone decreasing sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined by the recursive formula

$$
\begin{aligned}
& a_{1}=1 \\
& a_{n}=-8+\frac{a_{n-1}}{3}, \quad \text { with } n \geq 2
\end{aligned}
$$

- Prove that the sequence is bounded.
- Calculate $\lim _{n \rightarrow \infty} a_{n}$.

Problem 2. Find all values of the parameter $\alpha \in \mathbb{R}$ such that the series

$$
\sum_{k=1}^{\infty}(-1)^{k} \frac{3^{k} \alpha^{2 k}}{k+1}
$$

is convergent.

Problem 3. Approximate the value

$$
\sqrt[3]{1.1}
$$

by a polynomial of degree 2 and find an appropriate upper bound for the involved error.

Problem 4. Given the function

$$
f(x)=x^{x},
$$

find the exact number of real solutions of the equation $f(x)=2$ in the interval $[1,+\infty)$.

