OpenCourseWare

CALCULUS - EVALUATION TEST 5 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the monotone sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined by the recursive formula

$$
a_{1}=0 ; \quad a_{n}=\sqrt{a_{n-1}+20}, \quad \text { with } n \geq 2
$$

Prove that the sequence is bounded and calculate $\lim _{n \rightarrow \infty} a_{n}$.

SOLUTION

Let us suppose that the sequence has a finite limit, say $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$. Then, as $n \rightarrow \infty$ in both sides of the recursive formula, we get

$$
a=\sqrt{a+20} \Longrightarrow a^{2}=a+20 \Longrightarrow a=-4,5
$$

where the value $a=-4$ must be discarded, since the sequence is increasing with positive terms. Hence, $a=5$ is the unique candidate to be the value of the limit.

Now, let us prove by the principle of induction that the sequence is bounded above by 5, namely $0 \leq a_{n} \leq 5$ for all $n \in \mathbb{N}$. First, this property holds for $n=1$, as $0 \leq a_{1}=0 \leq 5$. Then, assuming that $0 \leq a_{k} \leq 5$ for $n=k \in \mathbb{N}$, we get (for $n=k+1$)

$$
0 \leq a_{k+1}=\sqrt{a_{k}+20} \leq \sqrt{5+20}=5
$$

Hence, the sequence is bounded and has a finite limit thanks to its increasing behavior. As a consequence, the limit value is $a=5$, as previously calculated.

Problem 2. Calculate

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+x^{2}}+2 x+x \arctan (x)-e^{3 x}[1-\ln (1+x)]}{x[\ln (1+5 x)+\arctan (2 x)]} .
$$

SOLUTION

In the given limit, we have $x \rightarrow 0$, hence we can approximate all involved elementary functions by the corresponding Maclaurin polynomials of a suitable degree, namely

$$
\lim _{x \rightarrow 0} \frac{1+\frac{1}{2} x^{2}+o\left(x^{2}\right)+2 x+x[x+o(x)]-\left[1+3 x+\frac{9}{2} x^{2}+o\left(x^{2}\right)\right]\left[1-x+\frac{1}{2} x^{2}+o\left(x^{2}\right)\right]}{x[5 x+o(x)+2 x+o(x)]} .
$$

Finally, after simplifying the previous expression and retaining all terms with powers of x up to 2 , we obtain

$$
\lim _{x \rightarrow 0} \frac{-\frac{1}{2} x^{2}+o\left(x^{2}\right)}{7 x^{2}+o\left(x^{2}\right)}=-\frac{1}{14} .
$$

Problem 3. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\int_{0}^{x} e^{1-\sqrt{1+t^{2}}} d t
$$

- Prove that $\mathrm{f}(\mathrm{x})$ is odd.
- Prove that $f(x)$ is increasing.
- Find the Taylor polynomial of degree 3 about $x_{0}=0$ for $f(x)$.
- Study the convergence of the improper integral

$$
\lim _{x \rightarrow+\infty} f(x)=\int_{0}^{\infty} e^{1-\sqrt{1+t^{2}}} d t
$$

SOLUTION

- The function $f(x)$ is odd since

$$
f(-x)=\int_{0}^{-x} e^{1-\sqrt{1+t^{2}}} d t=-\int_{0}^{x} e^{1-\sqrt{1+u^{2}}} d u=-f(x)
$$

where the second identity is obtained by the change of variable $u=-t$.

- The function $f(x)$ is increasing as

$$
f^{\prime}(x)=e^{1-\sqrt{1+x^{2}}}>0
$$

for all $x \in \mathbb{R}$. Note that $f^{\prime}(x)$ has been calculated thanks to the Fundamental Theorem of Calculus.

- The desired Taylor polynomial is

$$
P_{3}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}
$$

In addition, we have $f(0)=0$ and $f^{\prime}(0)=1$ (see the previous item). After calculating the second and third derivatives of $f(x)$, we obtain $f^{\prime \prime}(0)=0$ and $f^{\prime \prime \prime}(0)=-1$. Thus, we can finally write

$$
P_{3}(x)=x-\frac{1}{6} x^{3} .
$$

- We have

$$
\lim _{\mathrm{t} \rightarrow \infty} \frac{e^{1-\sqrt{1+\mathrm{t}^{2}}}}{e^{-\mathrm{t}}}=e>0
$$

Hence, being $\int_{0}^{\infty} e^{-t} d t$ convergent, the limit comparison test concludes that $\int_{0}^{\infty} e^{1-\sqrt{1+t^{2}}} d t$ converges as well.

Problem 4. Calculate

$$
\int \frac{\sin \left(x^{1 / 3}\right)}{x^{1 / 3}} d x
$$

in terms of elementary functions.

SOLUTION

Let us consider the change of variable

$$
u=x^{1 / 3} ; \quad d u=\frac{1}{3} x^{-2 / 3} d x \Longrightarrow d x=3 u^{2} d u
$$

Then, the given integral can be written as

$$
\int \frac{\sin \left(x^{1 / 3}\right)}{x^{1 / 3}} d x=3 \int u \sin (u) d u=-3 u \cos (u)+3 \sin (u)+k
$$

where k is an arbitrary constant and the last identity has been obtained integrating by parts. Finally, in terms of the original variable, we get

$$
\int \frac{\sin \left(x^{1 / 3}\right)}{x^{1 / 3}} d x=-3 x^{1 / 3} \cos \left(x^{1 / 3}\right)+3 \sin \left(x^{1 / 3}\right)+k
$$

with $k \in \mathbb{R}$.

