OpenCourseWare

CALCULUS - EVALUATION TEST 5

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the monotone sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined by the recursive formula

$$
a_{1}=0 ; \quad a_{n}=\sqrt{a_{n-1}+20}, \quad \text { with } n \geq 2
$$

Prove that the sequence is bounded and calculate $\lim _{n \rightarrow \infty} a_{n}$.

Problem 2. Calculate

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+x^{2}}+2 x+x \arctan (x)-e^{3 x}[1-\ln (1+x)]}{x[\ln (1+5 x)+\arctan (2 x)]} .
$$

Problem 3. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\int_{0}^{x} e^{1-\sqrt{1+t^{2}}} d t
$$

- Prove that $\mathrm{f}(\mathrm{x})$ is odd.
- Prove that $\mathrm{f}(\mathrm{x})$ is increasing.
- Find the Taylor polynomial of degree 3 about $x_{0}=0$ for $f(x)$.
- Study the convergence of the improper integral

$$
\lim _{x \rightarrow+\infty} f(x)=\int_{0}^{\infty} e^{1-\sqrt{1+t^{2}}} d t
$$

Problem 4. Calculate

$$
\int \frac{\sin \left(x^{1 / 3}\right)}{x^{1 / 3}} d x
$$

in terms of elementary functions.

