

OpenCourseWare

CALCULUS – EVALUATION TEST 5

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the monotone sequence $(a_n)_{n \in \mathbb{N}}$ defined by the *recursive* formula

 $a_1=0\,;\qquad a_n\,=\,\sqrt{a_{n-1}+20}\,,\quad \text{with }n\geq 2\,.$

Prove that the sequence is bounded and calculate $\lim_{n\to\infty} a_n$.

Problem 2. Calculate

$$\lim_{x \to 0} \frac{\sqrt{1+x^2}+2x+x\arctan(x)-e^{3x}\left[1-\ln(1+x)\right]}{x\left[\ln(1+5x)+\arctan(2x)\right]}.$$

Problem 3. Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \int_0^x e^{1-\sqrt{1+t^2}} dt.$$

- Prove that f(x) is *odd*.
- Prove that f(x) is *increasing*.
- Find the Taylor polynomial of degree 3 about $x_0 = 0$ for f(x).
- Study the convergence of the *improper* integral

$$\lim_{x\to+\infty} f(x) = \int_0^\infty e^{1-\sqrt{1+t^2}} \, \mathrm{d}t \, .$$

Problem 4. Calculate

$$\int \frac{\sin(x^{1/3})}{x^{1/3}}\,dx$$

in terms of elementary functions.