OpenCourseWare

CALCULUS - EVALUATION TEST 6 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the sequence of real numbers defined by the general term

$$
a_{n}=\frac{n+\sin (\pi n / 2)}{3 n+5}, \quad \text { with } n=1,2,3, \ldots
$$

Prove whether the sequence is bounded, monotone, and convergent.

SOLUTION

First, note that

$$
\left(a_{n}\right)_{n \in \mathbb{N}}=\left(\frac{1}{4}, \frac{2}{11}, \frac{1}{7}, \frac{4}{17}, \ldots\right)
$$

with $a_{1}=\frac{1}{4}>a_{2}=\frac{2}{11}>a_{3}=\frac{1}{7}<a_{4}=\frac{4}{17}$. Hence, the sequence is not monotone.
Moreover, for all $n \in \mathbb{N}$, we can write

$$
0 \leq \frac{n-1}{3 n+5} \leq \frac{n+\sin (\pi n / 2)}{3 n+5} \leq \frac{n+1}{3 n+5} \leq 1
$$

which implies that the sequence is bounded. Finally, using the previous inequalities and applying the sandwich theorem, we can conclude that the sequence is convergent, with $a_{n} \rightarrow 1 / 3$ as $n \rightarrow \infty$.

Problem 2. Study the convergence of the series

$$
\sum_{n=1}^{\infty} \frac{\arctan (n)}{n^{2}+5}, \quad \sum_{n=1}^{\infty} \frac{\ln (n)}{n}
$$

SOLUTION

Let a_{n} be the general term of the first series. Then, considering $b_{n}=1 / n^{2}$, we have

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\arctan (n)}{n^{2}+5} n^{2}=\frac{\pi}{2}>0
$$

Hence, by the limit comparison test, the first series is convergent since $\sum_{n=1}^{\infty} 1 / n^{2}$ is so (note that both considered series have positive terms).

Regarding the second series, for all $n \geq 3$, we can write

$$
\frac{\ln (n)}{n} \geq \frac{1}{n}>0
$$

Hence, by the comparison test, the second series is divergent since $\sum_{n=1}^{\infty} 1 / n$ is so.

Problem 3. Determine the exact number of real solutions of the equation $\cos (x)=x$.

SOLUTION

Let us consider the function $f(x)=x-\cos (x)$, which is continuous and differentiable in \mathbb{R}. In addition, we have that $f^{\prime}(x)=1+\sin (x) \geq 0$ for all $x \in \mathbb{R}$ (namely, $f(x)$ is increasing) and

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty, \quad \lim _{x \rightarrow-\infty} f(x)=-\infty
$$

As a consequence, the graph of $f(x)$ crosses the x-axis at only one point, namely the given equation $f(x)=0$ has a unique real solution.

Problem 4. Calculate the angle formed by the tangent lines from the right and from the left, at $x_{0}=0$, to the graph of the function

$$
f(x)= \begin{cases}\frac{\sin (x)}{x}, & \text { if } x<0 \\ x e^{x}+1, & \text { if } x \geq 0\end{cases}
$$

SOLUTION

The slope of the tangent line from the right, at $x_{0}=0$, is

$$
f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} e^{x}=1
$$

On the other hand, the slope of the tangent line from the left, at $x_{0}=0$, is

$$
f^{\prime}\left(0^{-}\right)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{\sin (x)-x}{x^{2}}=0
$$

Hence, the desired angle is $\pi / 4$.

Problem 5. Find the family of polynomials $P(x)$ such that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1-x^{4}}-P(x)}{x^{7}}=0 .
$$

SOLUTION

Thanks to the Taylor Theorem, we can write $\sqrt{1-z}=1-z / 2-z^{2} / 8+o\left(z^{2}\right)$, hence

$$
\sqrt{1-x^{4}}=1-\frac{x^{4}}{2}+o\left(x^{7}\right)
$$

Then, if we need that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1-x^{4}}-P(x)}{x^{7}}=\lim _{x \rightarrow 0} \frac{1-\frac{x^{4}}{2}+o\left(x^{7}\right)-P(x)}{x^{7}}=0
$$

we can choose $P(x)$ in the family of polynomials of the form

$$
P(x)=1-\frac{x^{4}}{2}+a_{8} x^{8}+a_{9} x^{9}+\ldots+a_{n} x^{n},
$$

where a_{8}, \ldots, a_{n} are arbitrary real coefficients (with $n \in \mathbb{N}$).

Problem 6. Calculate

$$
\lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} t^{2} \cos \left(t^{2}\right) d t
$$

SOLUTION

According to the Taylor Theorem, we can write

$$
\mathrm{t}^{2} \cos \left(\mathrm{t}^{2}\right)=\mathrm{t}^{2}\left(1-\frac{\mathrm{t}^{4}}{2}+\frac{\mathrm{t}^{8}}{24}+\mathrm{o}\left(\mathrm{t}^{8}\right)\right)=\mathrm{t}^{2}-\frac{\mathrm{t}^{6}}{2}+\frac{\mathrm{t}^{10}}{24}+\mathrm{o}\left(\mathrm{t}^{10}\right) .
$$

Hence

$$
\int_{0}^{x} \mathrm{t}^{2} \cos \left(\mathrm{t}^{2}\right) \mathrm{dt}=\int_{0}^{x}\left(\mathrm{t}^{2}-\frac{\mathrm{t}^{6}}{2}+\frac{\mathrm{t}^{10}}{24}+\mathrm{o}\left(\mathrm{t}^{10}\right)\right) \mathrm{dt}=\frac{x^{3}}{3}-\frac{x^{7}}{14}+\mathrm{o}\left(\mathrm{x}^{7}\right)
$$

Finally, we can calculate the desired limit as

$$
\lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} t^{2} \cos \left(t^{2}\right) d t=\lim _{x \rightarrow 0} \frac{\frac{x^{3}}{3}-\frac{x^{7}}{14}+o\left(x^{7}\right)}{x^{3}}=\frac{1}{3} .
$$

Problem 7. Study the convergence of the improper integral

$$
\int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} d x
$$

SOLUTION

We can write

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} \mathrm{~d} x=\int_{0}^{1} e^{-x} x^{-1 / 2} \mathrm{~d} x+\int_{1}^{\infty} e^{-x} x^{-1 / 2} \mathrm{~d} x \tag{1}
\end{equation*}
$$

Regarding the first integral in the right-hand-side of eq.(1), we have that

$$
\lim _{x \rightarrow 0^{+}} \frac{e^{-x} x^{-1 / 2}}{x^{-1 / 2}}=1
$$

Hence, by the limit comparison test, the integral converges since $\int_{0}^{1} x^{-1 / 2} \mathrm{~d} x$ is convergent (all involved functions are positive for $x \in(0,1])$. Regarding the second integral in the right-hand-side of eq.(1), we have that

$$
\lim _{x \rightarrow \infty} \frac{e^{-x} x^{-1 / 2}}{e^{-x}}=0
$$

Hence, by the limit comparison test, the integral converges since $\int_{1}^{\infty} e^{-x} d x$ is convergent (all involved functions are positive for $x \geq 1$). As a consequence, the given improper integral converges since it is the sum of two convergent improper integrals.

