OpenCourseWare

CALCULUS - EVALUATION TEST 6

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the sequence of real numbers defined by the general term

$$
a_{n}=\frac{n+\sin (\pi n / 2)}{3 n+5}, \quad \text { with } n=1,2,3, \ldots
$$

Prove whether the sequence is bounded, monotone, and convergent.

Problem 2. Study the convergence of the series

$$
\sum_{n=1}^{\infty} \frac{\arctan (n)}{n^{2}+5}, \quad \sum_{n=1}^{\infty} \frac{\ln (n)}{n}
$$

Problem 3. Determine the exact number of real solutions of the equation $\cos (x)=x$.

Problem 4. Calculate the angle formed by the tangent lines from the right and from the left, at $x_{0}=0$, to the graph of the function

$$
f(x)= \begin{cases}\frac{\sin (x)}{x}, & \text { if } x<0 \\ x e^{x}+1, & \text { if } x \geq 0\end{cases}
$$

Problem 5. Find the family of polynomials $P(x)$ such that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1-x^{4}}-P(x)}{x^{7}}=0
$$

Problem 6. Calculate

$$
\lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} t^{2} \cos \left(t^{2}\right) d t
$$

Problem 7. Study the convergence of the improper integral

$$
\int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} d x
$$

