
OpenCourseWare

CALCULUS – EVALUATION TEST 7 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the sequence of real numbers (an)n∈N where

an =
√
n

2 cos (π(n+ 1)/2 )

1+ n
, with n = 1, 2, 3, . . . .

(a) Study whether the sequence is monotone and bounded.

(b) Calculate lim
n→∞an .

SOLUTION

(a) Note that a1 = −1, a2 = 0, a3 =
√
3/2, a4 = 0. Hence, the sequence is not monotone.

On the other hand, we can write

|an| ≤
2
√
n

1+ n
≤ 2

√
n

n
=

2√
n

≤ 2

for all n ∈ N , namely the sequence is bounded.

(b) The desired limit can be calculated as

lim
n→∞ 2 cos (π(n+ 1)/2 )

√
n

1+ n
= 0 ,

being the product of a bounded term and
√
n/(1+n), which tends to zero as n → ∞.



Problem 2. Find all values of the parameter α ∈ R such that the series

∞∑
n=1

(−1)n
(2α)3n

7n 3
√
n2 + n

is convergent.

SOLUTION

Let an be the general term of the series. Then∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣ (−1)n+1 (2α)3n+3

7n+1 3
√

(n+ 1)2 + n+ 1

7n 3
√
n2 + n

(−1)n (2α)3n

∣∣∣∣∣ =
8

7
|α|3

3
√
n2 + n

3
√
n2 + 3n+ 2

−→ 8

7
|α|3

as n → ∞. Hence, thanks to the ratio test, the series converges if 8 |α|3/7 < 1, namely
|α| <

3
√
7/2. On the other hand, the series is divergent if 8 |α|3/7 > 1, namely |α| >

3
√
7/2.

For α = 3
√
7/2, the series is ∞∑

n=1

(−1)n
1

3
√
n2 + n

,

which is convergent thanks to the Leibniz test (indeed, it is an alternating series, where
1/ 3

√
n2 + n is positive, decreasing, and tending to zero as n → ∞). For α = − 3

√
7/2, the

series is ∞∑
n=1

1
3
√
n2 + n

,

which diverges by the limit comparison test with the divergent series
∑∞

n=1 1/n
2/3. Thus,

we can conclude that the given series is convergent for − 3
√
7/2 < α ≤ 3

√
7/2.
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Problem 3. Approximate the value

ln
(
3

2

)
by a polynomial of suitable degree such that the involved error is smaller than 10−2.

SOLUTION

Note that

ln
(
3

2

)
= ln

(
1+

1

2

)
can be calculated by evaluating the function f(x) = ln(1 + x) at x = 1/2. Thanks to the
Taylor Theorem, this function can be expressed as

ln(1+ x) = x−
x2

2
+

x3

3
−

x4

4
+ . . .+ (−1)n−1 x

n

n
+ Rn(x) ,

where the remainder Rn(x) is

Rn(x) = (−1)n
1

(n+ 1)(1+ c)n+1
xn+1 ,

with n ∈ N and c ∈ (0, x) when x > 0. Hence, at x = 1/2, we can find an upper bound for
the error involved in the approximation as∣∣∣∣Rn

(
1

2

)∣∣∣∣ =
1

2n+1(n+ 1)(1+ c)n+1
<

1

2n+1 (n+ 1)
,

where the inequality is obtained by recalling that c ∈ (0, 1/2). Finally, after imposing

1

2n+1 (n+ 1)
< 10−2,

we can deduce that the degree of the considered Maclaurin polynomial must be n ≥ 4.
Using n = 4, the desired approximation is

ln
(
3

2

)
≈ 0.5−

(0.5)2

2
+

(0.5)3

3
−

(0.5)4

4
,

within an error smaller than 10−2.
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Problem 4. Consider the function

f(x) =



√
1− x arctan

(
1

x

)
, if 0 < x ≤ 1 ,

0 , if x = 0 ,

cos(x) − 1

x
, if x < 0 .

(a) Study whether f(x) is continuous at x = 0.

(b) Find the exact number of real solutions of the equation f(x) = −1 in the interval
(0, 1/2].

SOLUTION

(a) We have

lim
x→0+

f(x) = lim
x→0+

√
1− x arctan

(
1

x

)
=

π

2
,

lim
x→0−

f(x) = lim
x→0−

cos(x) − 1

x
= 0 .

Since the values of these lateral limits are distinct, limx→0 f(x) does not exist and the
function f(x) is not continuous at x = 0.

(b) For x ∈ (0, 1/2], the given equation can be written as

F(x) ≡ f(x) + 1 = 0 =⇒ F(x) =
√
1− x arctan

(
1

x

)
+ 1 = 0 .

Noting that F(x) is continuous and differentiable in the considered interval (as f(x)
is so), we can calculate its derivative as

F ′(x) = −

[
arctan

(
1
x

)
2
√
1− x

+

√
1− x

x2 + 1

]
.

Hence, F ′(x) < 0 and F(x) is decreasing in (0, 1/2], with limx→0+ F(x) = π/2 + 1 > 0

(see the previous item) and F(1/2) = arctan(2)/
√
2 + 1 > 0. As a consequence, the

equation f(x) = −1 has no real solution in the indicated interval.
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