OpenCourseWare

CALCULUS - EVALUATION TEST 7

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the sequence of real numbers $\left(a_{n}\right)_{n \in \mathbb{N}}$ where

$$
a_{n}=\sqrt{n} \frac{2 \cos (\pi(n+1) / 2)}{1+n}, \quad \text { with } n=1,2,3, \ldots
$$

(a) Study whether the sequence is monotone and bounded.
(b) Calculate $\lim _{n \rightarrow \infty} a_{n}$.

Problem 2. Find all values of the parameter $\alpha \in \mathbb{R}$ such that the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 \alpha)^{3 n}}{7 n \sqrt[3]{n^{2}+n}}
$$

is convergent.

Problem 3. Approximate the value

$$
\ln \left(\frac{3}{2}\right)
$$

by a polynomial of suitable degree such that the involved error is smaller than 10^{-2}.

Problem 4. Consider the function

$$
f(x)= \begin{cases}\sqrt{1-x} \arctan \left(\frac{1}{x}\right), & \text { if } 0<x \leq 1 \\ 0, & \text { if } x=0 \\ \frac{\cos (x)-1}{x}, & \text { if } x<0\end{cases}
$$

(a) Study whether $f(x)$ is continuous at $x=0$.
(b) Find the exact number of real solutions of the equation $f(x)=-1$ in the interval $(0,1 / 2]$.

