OpenCourseWare

CALCULUS - EVALUATION TEST 8 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Solve the following issues.
(a) Consider the recursive sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined as

$$
a_{1}=\frac{1}{2} ; \quad a_{n+1}=\left(a_{n}\right)^{2}+\frac{4}{25}, \quad \text { with } n \geq 1
$$

Then, prove that $\lim _{n \rightarrow \infty} a_{n}$ exists and calculate its value.
(b) Study the convergence of the series $\sum_{n=1}^{\infty} \frac{\arctan \left(n^{4}\right)}{\sqrt{n^{4}+1}}$.

SOLUTION

(a) Let us apply the principle of induction to prove that the sequence is bounded below for all $n \in \mathbb{N}$. First, we have $a_{1}=1 / 2>1 / 5$. Then, assuming that $a_{k}>1 / 5$ for $n=k \in \mathbb{N}$, we get (for $n=k+1$)

$$
a_{k+1}=\left(a_{k}\right)^{2}+\frac{4}{25}>\left(\frac{1}{5}\right)^{2}+\frac{4}{25}=\frac{1}{5}
$$

On the other hand, by means of the same principle, we can prove that the sequence is decreasing for all $n \in \mathbb{N}$. First, we have $a_{1}=1 / 2>a_{2}=41 / 100$. Then, assuming that $a_{k}>a_{k+1}$ for $n=k \in \mathbb{N}$, we get (for $n=k+1$)

$$
a_{k+1}=\left(a_{k}\right)^{2}+\frac{4}{25}>\left(a_{k+1}\right)^{2}+\frac{4}{25}=a_{k+2}
$$

Thus, the sequence is bounded below and decreasing, hence convergent. Now, let $\lim _{n \rightarrow \infty} \mathrm{a}_{\mathrm{n}}=\mathrm{L} \in \mathbb{R}$. Then, if $\mathrm{n} \rightarrow \infty$ in both sides of the recursive formula, we get $\mathrm{L}=\mathrm{L}^{2}+4 / 25$, namely $\mathrm{L}=1 / 5$ or $\mathrm{L}=4 / 5$. As the sequence is decreasing and $a_{1}=1 / 2$, the limit value must be $L=1 / 5$.
(b) The series converges by the limit comparison test with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

Problem 2. Consider

$$
f(x)= \begin{cases}e^{\frac{1}{x}}+\beta x, & \text { if } x<0 \\ \beta \sin (x)-\frac{1}{2} \sin ^{2}(x), & \text { if } x \geq 0\end{cases}
$$

where $\beta \in \mathbb{R}$ is a parameter.
(a) Find for which values of β the function $f(x)$ is differentiable in \mathbb{R}.
(b) Find (if any) the values of β such that the tangent line to the graph of $f(x)$ at $x_{0}=0$ is parallel to the line with equation $y=3 x-7$.

SOLUTION

(a) If $x \neq 0, f(x)$ is defined in terms of differentiable elementary functions, hence it is differentiable independently of the value of β. Moreover, $f(x)$ is also differentiable at $\chi=0$, for all $\beta \in \mathbb{R}$, since

$$
\begin{gathered}
f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{\beta \sin (x)-\frac{1}{2} \sin ^{2}(x)}{x}=\beta \\
f^{\prime}\left(0^{-}\right)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{e^{\frac{1}{x}}+\beta x}{x}=\beta
\end{gathered}
$$

(b) Being $f^{\prime}(0)=\beta$ (see the previous item), the desired value is $\beta=3$.

Problem 3. Approximate the value $\sqrt[3]{1010}$ by means of the Taylor polynomial of degree 3 for the function $f(x)=\sqrt[3]{x}$ about $a=1000$. Then, find an upper bound for the involved error.

SOLUTION

Thanks to the Taylor Theorem, we can write (at $x=1010$)

$$
\sqrt[3]{1010} \approx 10+\frac{1}{3 \cdot 10^{2}}(1010-1000)-\frac{2}{2 \cdot 9 \cdot 10^{5}}(1010-1000)^{2}+\frac{10}{6 \cdot 27 \cdot 10^{8}}(1010-1000)^{3}
$$

On the other hand, the involved approximation error can be upper bounded as

$$
\left|R_{3}(1010)\right|=\left|\frac{80}{4!81 c^{11 / 3}}(1010-1000)^{4}\right| \leq \frac{80}{4!81} 10^{-7}
$$

where $R_{3}(x)$ is the remainder and the inequality is obtained as $1000<c<1010$.

Problem 4. Let $F(x)=\int_{0}^{e^{-x}} \frac{1}{\ln (t)} d t$.
(a) Find the global maximum and minimum of $F(x)$ in the interval $x \in[1,2]$.
(b) Calculate $\lim _{x \rightarrow+\infty} x F(x)$.

SOLUTION

(a) Thanks to the Fundamental Theorem of Calculus, we can write $F^{\prime}(x)=e^{-x} / x>0$ for all $x \in[1,2]$, hence $F(x)$ is strictly increasing in that interval. Thus, the global maximum and minimum of $F(x)$ are attained at $x=2$ and $x=1$, respectively.
(b) We have

$$
\lim _{x \rightarrow+\infty} x F(x)=\lim _{x \rightarrow+\infty} \frac{F(x)}{1 / x}=\lim _{x \rightarrow+\infty} \frac{e^{-x} / x}{-1 / x^{2}}=\lim _{x \rightarrow+\infty}-\frac{x}{e^{x}}=0
$$

where the l'Hôpital's rule has been applied in the second identity.

Problem 5. Calculate the following indefinite integrals.
(a) $\int x^{2} e^{-3 x} d x$.
(b) $\int \frac{x}{x^{2}-x+1} d x$.

SOLUTION

(a) $\int x^{2} e^{-3 x} d x=[$ integration by parts $]=-\frac{1}{3} e^{-3 x}\left(x^{2}+\frac{2}{3} x+\frac{2}{9}\right)+c \quad($ with $c \in \mathbb{R})$.
(b) $\int \frac{x}{x^{2}-x+1} d x=$ [integral of a rational function; partial fraction decomposition] $=$ $=\frac{1}{2} \ln \left|x^{2}-x+1\right|+\frac{\sqrt{3}}{3} \arctan \left(\frac{2 x-1}{\sqrt{3}}\right)+c \quad$ (with $\left.c \in \mathbb{R}\right)$.

Problem 6. Consider the improper integral $\int_{0}^{\infty}(x+1)^{p} e^{-x^{2}} d x$, with $p \in \mathbb{N}$.
(a) Study its convergence for $p=2$.
(b) Knowing that $\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x=\frac{\sqrt{\pi}}{2}$, calculate its value for $p=1$.

SOLUTION

(a) The given integral is convergent by the limit comparison test with $\int_{0}^{\infty} e^{-x} d x$.
(b) Using the definition of improper integral (of the first kind), we can write

$$
\begin{aligned}
\int_{0}^{\infty}(x+1) e^{-x^{2}} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b}(x+1) e^{-x^{2}} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} x e^{-x^{2}} d x+\int_{0}^{\infty} e^{-x^{2}} d x \\
& =\frac{1}{2} \lim _{b \rightarrow \infty}\left[1-e^{-b^{2}}\right]+\frac{\sqrt{\pi}}{2}=\frac{\sqrt{\pi}+1}{2}
\end{aligned}
$$

where $\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x=\frac{\sqrt{\pi}}{2}$ has been used.

