OpenCourseWare

CALCULUS - EVALUATION TEST 8

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Solve the following issues.
(a) Consider the recursive sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined as

$$
a_{1}=\frac{1}{2} ; \quad a_{n+1}=\left(a_{n}\right)^{2}+\frac{4}{25}, \quad \text { with } n \geq 1
$$

Then, prove that $\lim _{n \rightarrow \infty} a_{n}$ exists and calculate its value.
(b) Study the convergence of the series $\sum_{n=1}^{\infty} \frac{\arctan \left(n^{4}\right)}{\sqrt{n^{4}+1}}$.

Problem 2. Consider

$$
f(x)= \begin{cases}e^{\frac{1}{x}}+\beta x, & \text { if } x<0 \\ \beta \sin (x)-\frac{1}{2} \sin ^{2}(x), & \text { if } x \geq 0\end{cases}
$$

where $\beta \in \mathbb{R}$ is a parameter.
(a) Find for which values of β the function $f(x)$ is differentiable in \mathbb{R}.
(b) Find (if any) the values of β such that the tangent line to the graph of $f(x)$ at $x_{0}=0$ is parallel to the line with equation $y=3 x-7$.

Problem 3. Approximate the value $\sqrt[3]{1010}$ by means of the Taylor polynomial of degree 3 for the function $f(x)=\sqrt[3]{x}$ about $a=1000$. Then, find an upper bound for the involved error.

Problem 4. Let $F(x)=\int_{0}^{e^{-x}} \frac{1}{\ln (t)} d t$.
(a) Find the global maximum and minimum of $F(x)$ in the interval $x \in[1,2]$.
(b) Calculate $\lim _{x \rightarrow+\infty} x F(x)$.

Problem 5. Calculate the following indefinite integrals.
(a) $\int x^{2} e^{-3 x} d x$.
(b) $\int \frac{x}{x^{2}-x+1} d x$.

Problem 6. Consider the improper integral $\int_{0}^{\infty}(x+1)^{p} e^{-x^{2}} d x$, with $p \in \mathbb{N}$.
(a) Study its convergence for $p=2$.
(b) Knowing that $\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x=\frac{\sqrt{\pi}}{2}$, calculate its value for $\mathrm{p}=1$.

