OpenCourseWare

CALCULUS - EVALUATION TEST 9 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be the recursive sequence defined as $x_{n+1}=\sqrt{2 x_{n}+3}$, for $n \geq 1$, with $x_{1}=1$. Prove that $\lim _{n \rightarrow \infty} x_{n}$ exists and calculate its value.

SOLUTION

Let us prove by the principle of induction that the sequence is increasing. For $n=1$, we have $x_{2}=\sqrt{5} \geq 1=x_{1}$. Then, assuming that $x_{k-1} \leq x_{k}$ for $n=k \in \mathbb{N}(k \geq 2)$, we get (for $\mathrm{n}=\mathrm{k}+1$)

$$
2 x_{k-1} \leq 2 x_{k} \Longrightarrow 2 x_{k-1}+3 \leq 2 x_{k}+3 \Longrightarrow \sqrt{2 x_{k-1}+3} \leq \sqrt{2 x_{k}+3} \Longrightarrow x_{k} \leq x_{k+1}
$$

Now, we can prove by the same principle that the sequence is bounded above by 3 . If $n=1$, we have $x_{1}=1 \leq 3$. In addition, assuming that $x_{k} \leq 3$ for $n=k \in \mathbb{N}$, we get (for $n=k+1$)

$$
2 x_{k} \leq 6 \Longrightarrow 2 x_{k}+3 \leq 9 \Longrightarrow \sqrt{2 x_{k}+3}=x_{k+1} \leq \sqrt{9}=3
$$

Hence, the sequence is convergent, namely $\lim _{n \rightarrow \infty} x_{n}=L \in \mathbb{R}$. Now, as $n \rightarrow \infty$ in both sides of the recursive formula, we get $L=\sqrt{2 L+3}$, namely $L=-1$ or $L=3$. Since the sequence is increasing, the limit value must be $L=3$.

Problem 2. Study the convergence of the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}+n^{-3}}{n^{a}}
$$

depending on the value of the parameter $a \in \mathbb{N}$.

SOLUTION

If $a=1,2,3$, the series is divergent since its general term does not tend to zero as $n \rightarrow \infty$. If $a \geq 4$, the series is convergent by the Leibniz test.

Problem 3. Consider the function

$$
f(x)= \begin{cases}6 \sqrt{x}-x \sqrt{x}, & \text { if } 0 \leq x \leq 4 \\ (x-4) e^{16-x^{2}}\left[2-\beta \sin \left(\frac{\pi}{8} x\right)\right]+4, & \text { if } x>4\end{cases}
$$

where $\beta \in \mathbb{R}$ is a parameter.
(a) Find the value of β such that $f(x)$ is differentiable at $x=4$.
(b) Find the global maximum and minimum of $f(x)$ in the interval $[0,4]$, if they exist.

SOLUTION

(a) Note that

$$
\begin{gathered}
\lim _{x \rightarrow 4^{+}} \frac{f(x)-f(4)}{x-4}=\lim _{x \rightarrow 4^{+}} e^{16-x^{2}}\left[2-\beta \sin \left(\frac{\pi}{8} x\right)\right]=2-\beta \\
\lim _{x \rightarrow 4^{-}} \frac{f(x)-f(4)}{x-4}=\lim _{x \rightarrow 4^{-}} \frac{6 \sqrt{x}-x \sqrt{x}-4}{x-4}=-\frac{3}{2}
\end{gathered}
$$

By definition of differentiability of a real function at a point, the values of these lateral limits should coincide. Hence, $f(x)$ is differentiable at $x=4$ if $\beta=7 / 2$.
(b) In the closed and bounded interval $[0,4]$, the function $f(x)$ is continuous, hence its global maximum and minimum exist. Moreover, the only critical point in $(0,4)$ is $x=2$, which is calculated by imposing

$$
f^{\prime}(x)=\frac{6-3 x}{2 \sqrt{x}}=0
$$

Thus, the global extrema of $f(x)$ must be attained at certain points among $x=2$, $x=0$, and $x=4$. Observing that $f(2)=4 \sqrt{2}, f(0)=0$, and $f(4)=4$, we can conclude that 0 is the global minimum (attained at $x=0$) and $4 \sqrt{2}$ is the global maximum (attained at $x=2$).

Problem 4. Let $F(x)=\int_{0}^{x^{2}} \cos (\sqrt{t}) d t$.
(a) Using the Maclaurin polynomial of degree 2 for $F(x)$, approximate the value

$$
\int_{0}^{0.01} \cos (\sqrt{t}) d t
$$

(b) Calculate $\lim _{x \rightarrow 0} \frac{F(x)-x^{2}}{x^{4}}$.

SOLUTION

(a) We have $F(x) \approx P_{2}(x)=x^{2}$ and we can write

$$
\int_{0}^{0.01} \cos (\sqrt{\mathrm{t}}) \mathrm{dt} \approx \mathrm{P}_{2}(0.1)=0.01
$$

(b) We have $F(x) \approx P_{4}(x)=x^{2}-\frac{x^{4}}{4}$. Then, we get

$$
\lim _{x \rightarrow 0} \frac{F(x)-x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{\left[x^{2}-\frac{x^{4}}{4}+o\left(x^{4}\right)\right]-x^{2}}{x^{4}}=-\frac{1}{4}
$$

Problem 5. Calculate the following indefinite integrals.
(a) $\int e^{x} \cos (2 x) d x$.
(b) $\int \frac{2 x-3}{x^{2}+2 x+2} d x$.

SOLUTION

(a) Integration by parts: $\int e^{x} \cos (2 x) d x=\frac{1}{5} e^{x}[\cos (2 x)+2 \sin (2 x)]+c \quad(c \in \mathbb{R})$.
(b) Integral of a rational function: $\int \frac{2 x-3}{x^{2}+2 x+2} d x=\ln \left|x^{2}+2 x+2\right|-5 \arctan (x+1)+c$ $(c \in \mathbb{R})$.

Problem 6. Study for which values of the parameter $k \in \mathbb{R}$ the improper integral

$$
\int_{0}^{2} \frac{1}{x^{k}}(1-x)^{k-1} d x
$$

is convergent.

SOLUTION

Let $f(x)$ be the function to be integrated and $\lambda \in(0,1)$. Then, the given improper integral can be written as

$$
\int_{0}^{2} f(x) d x=\int_{0^{+}}^{\lambda} f(x) d x+\int_{\lambda}^{1^{-}} f(x) d x+\int_{1^{+}}^{2} f(x) d x
$$

Hence, by the limit comparison test, we can prove that $\int_{0^{+}}^{\lambda} f(x) d x$ converges if $k<1$, while $\int_{\lambda}^{1^{-}} f(x) d x$ and $\int_{1^{+}}^{2} f(x) d x$ converge if $k>0$. Thus, the proposed integral converges for $k \in(0,1)$.

