Universidad Carlos III de Madrid Departamento de Matemáticas

DIFFERENTIAL CALCULUS

Degree in Applied Mathematics and Computation

Chapter 1

Elena Romera

General index

1	REAL VARIABLE FUNCTIONS	3
2	LIMITS AND CONTINUITY	20
3	DERIVATIVES AND THEIR APPLICATIONS	33
4	LOCAL STUDY OF A FUNCTION	4 4
5	SEQUENCES AND SERIES OF REAL NUMBERS	57
e	SEQUENCES AND SERIES OF FUNCTIONS	71

1

REAL VARIABLE FUNCTIONS

This first chapter is dedicated to basic concepts: the different kinds of numbers with the properties of the real numbers and the real variable functions.

Contents

1.1	The re	eal line
	1.1.1	Different kinds of numbers 4
	1.1.2	Inequalities, absolute value and subsets 5
	1.1.3	Elementary curves 6
1.2	Eleme	entary functions
	1.2.1	First definitions
	1.2.2	Properties
	1.2.3	Trigonometric functions
	1.2.4	Logarithm and exponential
	1.2.5	Operations with functions
	1.2.6	Inverse functions
	1.2.7	Polar coordinates

1.1 The real line

1.1.1 Different kinds of numbers

- A. Natural numbers: $\mathbb{N} = \{(0), 1, 2, 3, \dots\}$. Operations and properties:
 - (+) associative, commutative, additive identity (0),
 - (\cdot) associative, commutative, multiplicative identity (1),
 - $(+,\cdot)$ distributive.

Induction principle

The property P is true for every $n \in \mathbb{N}$ if

- 1. P is true for n = 1;
- 2. when P is true for n then it is also true for n + 1.

Example: 1.1.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 can be proved using induction.

Also they are **unbounded above.** Problem: x + 3 = 0 does not have any solution $x \in \mathbb{N}$.

B. Integers: $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \dots\}$. New property: (+) inverse element.

Problem: 2x-3=0 does not have any solution $x\in\mathbb{Z}$.

C. Rationals: $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$. New property: (·) inverse element (but not for 0).

They are **countable**, as \mathbb{N} and \mathbb{Z} . Problem: $x^2 - 2 = 0$ does not have any solution $x \in \mathbb{Q}$.

D. **Reals:** $\mathbb{R} = \mathbb{Q} \cup \{\text{numbers with non periodic infinite figures}\}$ (in a first view). New and important property:

Completeness (continuity property):

Any non empty set in \mathbb{R} which is bounded from above has a minimum upper bound.

Two other useful properties are:

Trichotomy property:

For any number a one and only one of the following holds:

$$a = 0,$$
 $a > 0,$ or $a < 0.$

Arquimedian property:

For any number a in \mathbb{R} there exists an integer k such that

$$k \le a < k + 1$$
.

Problem: $x^2 + 1 = 0$ does not have any solution $x \in \mathbb{R}$, this leads to the **complex numbers!**!

The **real line** is the representation of the elements of \mathbb{R} as points.

1.1.2 Inequalities, absolute value and subsets

The inequalities: $>, <, \ge, \le$ satisfy the following:

PROPERTIES OF INEQUALITIES

1.
$$a > b \implies a + c > b + c \quad \forall c$$
.

2.
$$a > b$$
 and $c > 0 \implies ac > bc$.

3.
$$a > b$$
 and $c < 0 \implies ac < bc$.

Another important concept is the **absolute value**, |a|, defined by:

$$|a| = \begin{cases} a & \text{if} \quad a \ge 0, \\ -a & \text{if} \quad a < 0. \end{cases}$$

PROPERTIES OF ABSOLUTE VALUES

1.
$$|a| \ge 0$$
, $\forall a \in \mathbb{R}$; $|a| = 0 \iff a = 0$.

2.
$$|ab| = |a| \cdot |b|$$
.

3.
$$|a+b| \leq |a| + |b|$$
 (triangle inequality).

4.
$$\sqrt{a^2} = |a|$$
.

With this we define the **distance**: dist(a,b) = |a-b|.

Example: 1.2. $\{x \in \mathbb{R} : \operatorname{dist}(x, -1) \le 4\} = \{x \in \mathbb{R} : |x + 1| \le 4\} = \{x \in \mathbb{R} : -5 \le x \le 3\} = [-5, 3].$

We need some more definitions, the intervals on \mathbb{R} can be:

- 1. **open:** $(a, b) = \{x \in \mathbb{R} : a < x < b\}.$
- 2. **closed**: $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$.
- 3. semi-open or semi-closed: $[a,b) = \{x \in \mathbb{R} : a \le x < b\}, (a,b] = \{x \in \mathbb{R} : a < x \le b\}.$
- 4. **infinite**: $(a, \infty) = \{x \in \mathbb{R} : a < x\}, (-\infty, b) = \{x \in \mathbb{R} : x < b\}, [a, \infty) = \{x \in \mathbb{R} : a \le x\}, (-\infty, b] = \{x \in \mathbb{R} : x \le b\}.$

Also we say that the set $A \subset \mathbb{R}$ is **bounded above** if $\exists M \in \mathbb{R} : x \leq M$, $\forall x \in A$. The number M is called **upper bound**. Analogously, it is **bounded below** if $\exists K \in \mathbb{R} : x \geq K$, $\forall x \in A$ and the number K is called **lower bound**. It is **bounded** if it is bounded above and below.

The minimum upper bound is called **supremum** and it is denoted by $\sup(A)$. The maximum lower bound is called **infimum** and it is denoted by $\inf(A)$.

If $\sup(A) \in A$ then it is called **maximum**, $\max(A)$, and if $\inf(A) \in A$ it is called **minimum**, $\min(A)$.

Example: 1.3. The set $A = (-\infty, 1) \cup (1, 2)$ is bounded above but not below. The least upper bound is 2, and it is not in the set, so $2 = \sup(A)$.

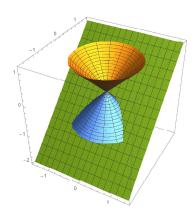
1.1.3 Elementary curves

A **straight line** has the equation: y = mx + d, or more generally, ax + by + c = 0, and even more: $y = y_0 + m(x - x_0)$ is the line through the point (x_0, y_0) with slope m.

Remember that the **distance** between $P = (x_1, y_1)$ and $Q = (x_2, y_2)$, is

$$dist(P,Q) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

With this we define the curves known as **conics** (sections of a double cone by a plane), that include:



1. **Parabola**: Points with the same distance to a fixed point, the focus, and a fixed straight line, the directrix, $y = \frac{1}{4c}x^2$ has the focus (0, c) and the directrix y = -c. A parabola is usually:

$$y = ax^2 + bx + c, \qquad a \neq 0,$$

and also $y = \sqrt{ax + b}$ is a half parabola.

2. Circumference: Points with the same distance, the radius r, to a fixed point, the center (x_0, y_0) :

$$(x-x_0)^2 + (y-y_0)^2 = r^2, r > 0.$$

3. **Ellipse**: Points with the same sum of distances to two fixed points, the focuses, placed at (x_0+c, y_0) and (x_0-c, y_0) , the sum is 2a, where:

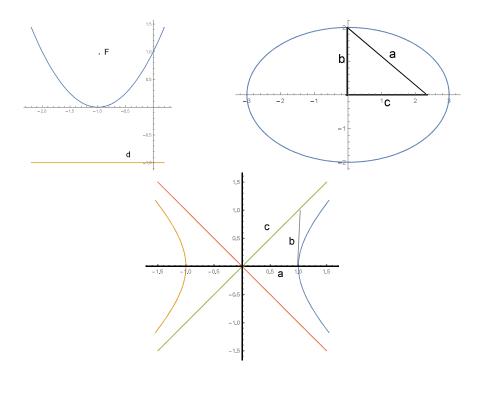
$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1, \quad a, b \neq 0, \quad b^2 + c^2 = a^2 \quad (\text{if } a > b).$$

4. **Hyperbola**: Points with the same difference of distances to two fixed points, the focuses, placed at (x_0+c, y_0) and (x_0-c, y_0) if the equation is:

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1, \qquad a, b \neq 0, \qquad a^2 + b^2 = c^2.$$

Also, we can have negative sign in the first term and positive in the second. How is the picture in this case?

5. A **point** and a **straight line** are also conics!!



- ERC-

1.2 Elementary functions

1.2.1 First definitions

A function is any rule that relates a value to every point of a certain set $A \subset \mathbb{R}$. The notation is $f: A \to \mathbb{R}$ and f(x) is the value of the function f at the point x.

The **domain** of f is the set of points for which it is defined, and it is denoted by Dom(f). The **image** is the set $Img(f) = \{f(x) : x \in Dom(f)\}$.

The **graph** of f is the set of points $\{(x, f(x)) : x \in Dom(f)\}$, and we can map those points in the XY-plane.

The **elementary functions** we are going to consider are polynomials, quotients of polynomials (rational functions), roots, trigonometric functions, logarithms and exponentials.

Example: 1.4. The domain of these functions is:

- 1. Polynomials: Dom = \mathbb{R} .
- 2. Quotients: $Dom = \{denominator different from zero\}.$
- 3. \sqrt{x} : Dom = $\{x \ge 0\}$.
- 4. $\sin x$ and $\cos x$: Dom = \mathbb{R} .
- 5. $\tan x$: Dom = $\{x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$ (where $\cos x$ does not vanish).
- 6. e^x : Dom = \mathbb{R} .
- 7. $\log x$: Dom = $\{x > 0\}$.

Observation 1.1. We use the notation $\log x = \ln x$. Every logarithm is a natural logarithm unless we specify a different basis.

A function is **bounded** if the set Img(f) is bounded (above or below or both).

The function f is **increasing** if

$$a, b \in Dom(f), \quad a < b \implies f(a) \le f(b)$$

and decreasing if $f(a) \ge f(b)$. Even more, f is strictly increasing if

$$a, b \in Dom(f), \quad a < b \implies f(a) < f(b)$$

and it is strictly decreasing if f(a) > f(b).

1.2.2 Properties

1. Injectivity:

- a) $f: A \to B$ is **injective**, or **one to one**, if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.
- b) $f: A \to B$ is **surjective** if for every $y \in B$ there exists at least one $x \in A$ with f(x) = y.
- c) $f: A \to B$ is **bijective** if it is injective and surjective, i.e., if $\forall y \in B \ \exists ! x \in A : f(x) = y$.

In the graph of the function this means in a) that every horizontal line passing through points of B intersects at most once the graph, in b) that it intersects at least once and in c) that it intersects exactly once the graph.

Example: 1.5. x^3 is bijective, x^2 is not injective.

2. A function is **periodic** if

$$\exists K > 0 : f(x) = f(x+K) \qquad \forall x \in \text{Dom}(f).$$

The constant K is the **period**, but nK is also a period $\forall n \in \mathbb{Z}$, so we usually consider the **minimum period**.

Example: 1.6. All the trigonometric functions are periodic: $\sin x$, $\cos x$, $\sec x$ and $\csc x$ have period 2π , $\tan x$ and $\cot x$ have period π .

3. Symmetries:

- a) f is even if f(-x) = f(x), $\forall x \in \text{Dom}(f)$.
- b) f is **odd** if f(-x) = -f(x), $\forall x \in \text{Dom}(f)$.

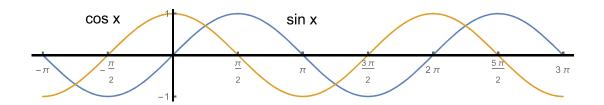
If f is even, its graph is symmetric with respect to the Y axis. If it is odd it is symmetric with respect to the origin.

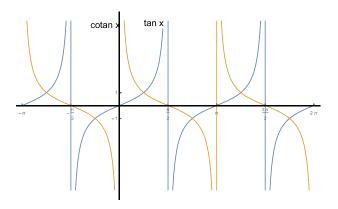
Example: 1.7. x^2 and $\cos x$ are even, x^3 and $\sin x$ are odd.

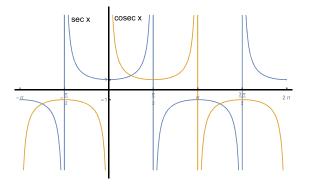
1.2.3 Trigonometric functions

The functions $\sin x$ and $\cos x$ are the most famous and appear in the unit circumference. The arguments are always in radians (not in degrees). Related to them we have:

$$\tan x = \frac{\sin x}{\cos x}, \qquad \cot x = \frac{\cos x}{\sin x}, \qquad \sec x = \frac{1}{\cos x}, \qquad \csc x = \frac{1}{\sin x}.$$







Besides, there are very useful relations, the most important are:

$$\begin{split} \sin^2 x + \cos^2 x &= 1, \\ \sin(2x) &= 2 \sin x \cos x, \\ \cos(2x) &= \cos^2 x - \sin^2 x, \\ \tan(2x) &= \frac{2 \tan x}{1 - \tan^2 x}, \\ \sin(x + y) &= \sin x \cos y + \cos x \sin y, \\ \cos(x + y) &= \cos x \cos y - \sin x \sin y, \\ \tan(x + y) &= \frac{\tan x + \tan y}{1 - \tan x \tan y}, \\ \sin(x + \frac{\pi}{2}) &= \cos x, \qquad \sin(x + \pi) = -\sin x. \end{split}$$

1.2.4 Logarithm and exponential

Every logarithm is related to the natural logarithm by a constant, if a > 0 (in our notation, $\log x = \ln x$):

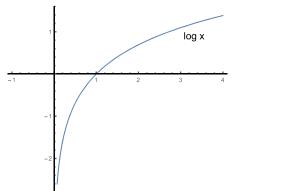
$$\log_a x = b \iff a^b = x \iff e^{b \log a} = x \iff b \log a = \log x$$

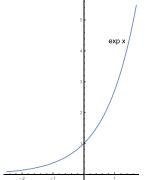
$$\implies \log_a x = \frac{\log x}{\log a}.$$

All the logarithms we consider are natural, unless another basis is specified.

PROPERTIES OF LOGARITHMS

- 1. $\log_a 1 = 0$.
- 2. $\log_a a = 1$.
- 3. $\log_a x + \log_a y = \log_a(xy)$.
- $4. \log_a x \log_a y = \log_a \frac{x}{y}.$
- 5. $\log_a(x^c) = c \log_a x$.





Exponentials are defined for positive bases, and their properties are:

PROPERTIES OF EXPONENTIALS

- 1. $a^0 = 1$.
- 2. $a^1 = a$.
- 3. $a^{x+y} = a^x a^y$.

$$4. \ a^{x-y} = \frac{a^x}{a^y}.$$

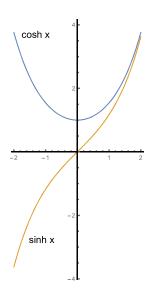
5.
$$a^{xc} = (a^x)^c$$
.

$$6. \ a^{x/y} = \sqrt[y]{a^x}.$$

The basis we prefer is e and we can use the notation $e^x = \exp(x)$.

Now we can define the **hyperbolic functions** as follows:

- a) hyperbolic sine of x is $\sinh x = \frac{e^x e^{-x}}{2}$.
- b) hyperbolic cosine of x is $\cosh x = \frac{e^x + e^{-x}}{2}$.
- c) hyperbolic tangent of x is $tgh x = \frac{\sinh x}{\cosh x}$.
- c) hyperbolic cotangent of x is $\operatorname{cotgh} x = \frac{\cosh x}{\sinh x}$.



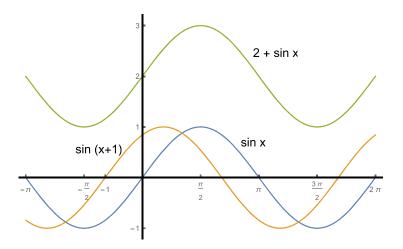
They are related to the trigonometric functions, for example they satisfy:

$$\cosh^2 x - \sinh^2 x = 1.$$

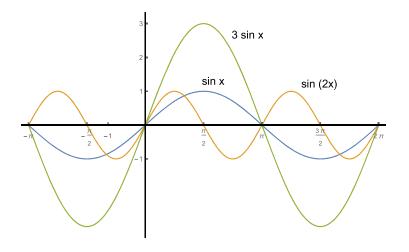
1.2.5 Operations with functions

Changes in graphs:

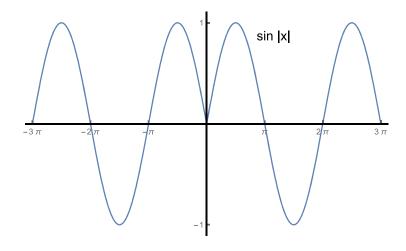
a) Translations: horizontal y = f(x + c), vertical y = f(x) + c.



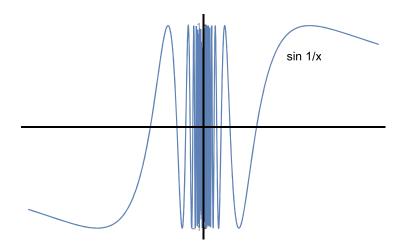
b) **Dilations**: horizontal y = f(cx), vertical y = cf(x).



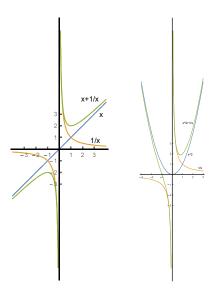
c) Symmetries: horizontal y = f(|x|), vertical y = |f(x)|.



d) Inversions: horizontal y = f(1/x), vertical y = 1/f(x).



e) **Sums**: We can obtain graphically the sum of functions if they are easy:



The **composition** of two functions f and g where $f:A\to B$ and $g:B\to C$ is a function h defined by

$$h = g \circ f : A \to C,$$
 $h(x) = g \circ f(x) = g(f(x)).$

In general $Dom(g \circ f) = \{x \in Dom(f) : f(x) \in Dom(g)\}.$

Example: 1.8. Given the functions $f(x) = \cos x$, $g(x) = x^2$ and $h(x) = 1 + \log |x|$, we have that:

$$f \circ g(x) = f(g(x)) = \cos(x^2), \qquad g \circ h \circ f(x) = g(h(f(x))) = (1 + \log|\cos x|)^2.$$

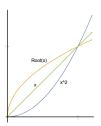
1.2.6 Inverse functions

Two functions $f: A \to B$ and $g: B \to A$ are **inverse functions** of each other if their composition is the identity function,

$$g \circ f = Id : A \to A,$$
 $f \circ g = Id : B \to B,$ $g \circ f(x) = x \quad \forall x \in A,$ $f \circ g(x) = x \quad \forall x \in B.$

They are denoted by $g = f^{-1}$ and $f = g^{-1}$. The inverse function of $f: A \to B$ exists if and only if f is injective. But for functions which are not injective not everything is lost! we can consider only a part of the function where it is injective. Some famous examples of this lead to the definition of **arcsine**, **arccosine** and **arctangent**:

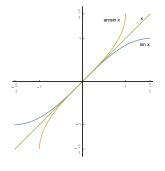
Example: 1.9. 1.
$$f(x) = x^2$$
, $f: [0, \infty) \to [0, \infty)$, $f^{-1}(x) = \sqrt{x}$.

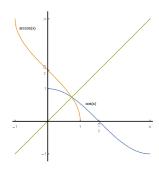


2.
$$f(x) = e^x$$
, $f: \mathbb{R} \to (0, \infty)$, $f^{-1}(x) = \log x$.

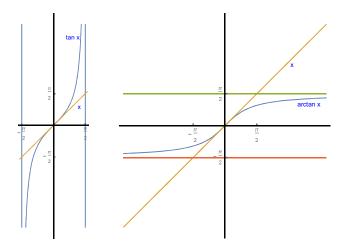
3.
$$f(x) = \sin x$$
, $f: [-\pi/2, \pi/2] \to [-1, 1]$, $f^{-1}(x) = \arcsin x$.

4.
$$f(x) = \cos x$$
, $f: [0, \pi] \to [-1, 1]$, $f^{-1}(x) = \arccos x$.





5.
$$f(x) = \tan x$$
, $f: (-\pi/2, \pi/2) \to \mathbb{R}$, $f^{-1}(x) = \arctan x$.

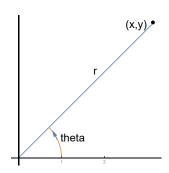


Observe that the graphs of a function and its inverse are symmetric with respect to the bisectrix of the first and third quadrants: y = x.

1.2.7 Polar coordinates

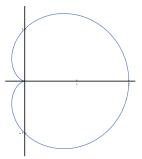
Some graphs are easier in terms of the radius, r, and the angle from the positive X-axis, θ , which are known as **polar coordinates**, defined by:

$$\left\{ \begin{array}{l} r = \sqrt{x^2 + y^2}, \\ \theta = \arctan \frac{y}{x}. \end{array} \right. \iff \left\{ \begin{array}{l} x = r\cos\theta, \\ y = r\sin\theta. \end{array} \right. \left. (x,y) \in \mathbb{R}^2, \\ r \in [0,\infty), \ \theta \in [0,2\pi). \end{array} \right.$$



Example: 1.10. r=2 is the circumference centered at the origin with radius 2. This cannot be described with a single function in cartesian coordinates.

Example: 1.11. The graph shows the curve $r = 1 + \cos \theta$, $\theta \in [0, 2\pi]$, named **cardioid.**



- ERC-

