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LIMITS AND CONTINUITY

In this chapter we study the concepts of limits with the calculation techniques
and continuity, including the most important theorems.
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2.1 Limits

2.1.1 Definitions and basic properties
We say that f tends to the limit ¢ when x approaches xg, and write

A, 1=

if Ve > 0 39 > 0 such that | f(z) — ¢| < e provided 0 < |z — | < d.
An alternative notation is }lbiHé flx+h) ="
—

We do not care about the values of f far from x = xy, we only look at

the values = close to xg but not at that point x.

Example: 2.1. lini(?»x —7) =>5since [3x —7—5| =3z —4| < e is
T—
obtained if we take § = ¢/3.

The function f does not tend to the limit £ when x approaches zq if
Je > 0 such that Vo > 0 exists some z satisfying 0 < |z — zo| < 0 and
nevertheless |f(z) — | > e.

Example: 2.2. 1 does not have a limit at zo = 0, but lim z? = 4.
z—

Example: 2.3. The function sin% does not have a limit at xy = 0,
and the characteristic function of R\ Q, defined by

1, zeR\Q,
XR\Q(x): 0, zeQ

has no limit at any point.
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THEOREM 2.1. (Uniqueness)

If the limit exists it is unique, i.e., if £ and m both satisfy the defini-

tion, then £ = m.

PROPERTIES OF LIMITS

If there exist lim f(x) =1 and lim g(z) = m, then:

T—T0 T—T0

1. lim (cf(z)) =cl, ifceR.

3. lim (f(a)g(a)) = om
4 flo) _ ¢ , ifm#0
z=zo g(x) M

The right hand limit of f at the point zg is £ if: Ve > 0 there exists a
0 > 0 such that |f(z) — ¢| < € provided x¢ < x < x¢ + 0, and we write:
lim f(z)="~¢.
z—xd
Analogously, the left hand limit of f at the point ¢ is £ if: Ve > 0 there
exists a 6 > 0 such that |f(z) — ¢] < ¢ provided zp — 0 < = < ¢, and we

write:

lim f(x)=~¢.

Z—}ZO

THEOREM 2.2. (Side limits)
The lim f(z) exists if and only if both side limits exist and

T—TQ
lim f(z)= lim f(x)=/{. Then, lim f(x)=~{.
+ T—T0

Z—}:EO x—m:o

The limit of a composition is obtained directly if all the limits involved

exist and the operations make sense, that is,

lim f(z)=¢ and limh(zx)=m = lim h(f(x))=m.

T—x0 z—L T—xQ

Example: 2.4. If lim f(zx) =/¢and lim g(z) =m, then:

T—rT0 T—I0

1. lim \/f(z) =V0,if £>0

T—xT0
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2. lim (f(2))"® = £, if the result is not 0°.

T—TQ

3. lim log, f(x) =log,(¢), if a >0, ¢ > 0.

T—TQ

But what happens with the infinite limits or the limits at infinity?
the corresponding definitions are:

a) We say that lgn f(z) = oo if for every real number M there exists a
T—x0

d > 0 such that f(z) > M provided 0 < |z — x¢| < 0.

b) We say that li_)m f(x) =L if for every € > 0 there exists a real number
N such that |f(z) — ¢| < € provided x > N.

c¢) We say that lim f(z) = oo if for every real number M there exists a
T—00
real number N such that f(x) > M provided z > N.

1/x

—-€

Exercise: Write the corresponding definitions for

Jim =, lim f(e) = —oc, and lim f(z) = —oc.

The properties of the limits (of the sum, product, etc... ) are true
also when some or both of the limits £ and m are infinite, whenever the

expressions are well defined or make sense.

2
Example: 2.5. x£r71r1/4 cos(z) = — and zl_i>r7£1/4 mz— = 00, SO

lim (cos(:z:))l/(x_”/4)2 = (@)w =0.

z—/4 2
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2.1.2 Calculus of limits

There are some formal operations with infinite that are well defined:

a—+ 00 =00, a— 00 = —00,
00 + 00 = 00, — 00— 00 =—00,
0000 = 00, — 0000 = —00,
a .
— =0, a-oo=00, if a>0,
00
a ) a .
— =00, if a>0, —=—o00, if a<0,
0 0
=00, if a>0, =0, if a<0,
0™ = 00, 00~ * =0,
a® =00, if a>1, a® =0, if 0<a<l.

But we also can find indeterminate forms: expressions whose value
cannot be determined in advance, and may be different in each case. The
most typical are the following:

0
00 — 00, g, — ., 0-00, 0, 0¥, 1, 17,
oo 0
Some of these indeterminate forms can be simplified by looking for com-
mon factors, dividing by the greatest term or using the conjugate.

2

. =9 . x+3

1
2 tim 23 g 1E3T
00 x — 4 z—>ool—4/;1:

6.

1
Jim (Ve V) w500 VI F 1+ VE

1/z lim o8
= exﬁoo = 1'

4. lim x
Tr—r 00

Some others can be solved using the following lemma:

LEMMA 2.3. (Sandwich or pinching lemma)
If g(x) < f(z) < h(z) for every 0 < |z — x¢| < ¢ and

lim g(z) = lim h(z) =¢

T—T0 T—T0

then
lim f(z)="¢.

T—TQ
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sinx

Example: 2.7. The limit lin% can be obtained geometrically

r— x
using this lemma: the areas of the three triangles involved are related as:

sin x cos x T tanx T 1
Ifxz >0 — < =< = cosx < — < =
2 T2 2 sinx CcOS T
. . sinz
lim — =1 <= lim =1.
r—0tT SInx r—0+t X

tan x

sin x

COS X

sinx
=1.

By symmetry, liII(l)
T— T

The indeterminations related to the exponential can be solved using the

following result.

THEOREM 2.4. (Ezponentials)

If lim f(x) =1 and lim g(x) is oo or —oo, then
T—Q T—Q

. T lim z)—1)g(x
lim (f(:z:))g( ) (f(@)-1)g(x)

= er—«
T—Q

if the last limit exists, where « can be xy, xar, Zy , 00 Or —0Q.
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: 10
(2z+3)x+5 — ol () Ty _ 5
2x— )

Example: 2.8. lim

T—00

— ERC—

[@ocle)
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2.2 Continuity

2.2.1 Continuity at a point

A function f is continuous at xg if le f(x) = f(zg), that is, if:
T—T0

Ve >0 30 =0d(g,x9) > 0 such that |z — zo| < 6 = |f(z) — f(z0)| < e.

An equivalent expression is lim ( flzo+h)—f (xo)) = 0.
h—0

PROPERTIES OF CONTINUITY

If f and g are continuous at xg:

1. f+ g is continuous at zg,

2. f - g is continuous at x,

3. 1) is continuous at xg if g(zg) # 0,
9(x)
4. If g is continuous at f(zp) then li_)m g(f(x)) =g( li_>m f(x)).
T—T0 T—X0
Example: 2.9. lim et = eﬂgiglo e e.

z—0

THEOREM 2.5. (Composition)
If g is continuous at xo and f is continuous at g(x¢), then f o g is

continuous at xg.

THEOREM 2.6. (Sign)

i) If f is continuous at xo and f(x¢) > 0 then there exists a § > 0
such that f(z) > 0 on (xg — 0, z¢ + ).

ii) If f is continuous at xy and f(x¢) < 0 then there exists a 6 > 0
such that f(z) <0 on (xg — 0, xg + 9).

N\
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2.2.2 Fundamental theorems

A function is continuous on (a,b) if it is continuous at any point of that
interval. A function is continuous on [a, b] if it is continuous on (a,b) and

also:

lim = f(a), and lim f(x)= f(b).

z—at z—b—
Example: 2.10. Polynomials, sine and cosine, exponential, square

root, logarithm are continuous in their domains.

There is an avoidable discontinuity at xg if there exists the lim f(z)

T—rT0
and it is finite but it is not f(z¢) or f(zp) does not exist.
sinx | .
Example: 2.11.  f(x) = is not continuous at z¢p = 0, but
x
sin
ifzz0,
g(x) = x is continuous on R.
1 if x =0,

The continuity on a closed interval implies some important theorems

that we study now.

THEOREM 2.7. (Bolzano)
If f is continuous on [a,b] and f(a)f(b) < O then there exists a point
¢ € (a,b) such that f(c) = 0.

05F

a=1 2 3

-0.5p

Example: 2.12.  The following functions do not satisfy this theorem:

f@)=1/z on[-1,1]; f(x)=1/z  on (0,1];
f(x)=22  on|0,1); f(z)=1/x on[1,00).
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There are two important applications of this result, the first one is useful

for computational calculation:

NEWTON’S BISECTION METHOD

To find a root of a continuous function f(z) on [a, b] when we know that
f(a)f(b) <0, we compute f(“T*b):

1. If f(“T*'b) = 0 we have finished.

2. If it is not we have a smaller interval in which there is a root and we

compute f in the middle point of it.

3. We continue until we arrive to the desired accuracy.

Another consequence of the theorem is:

THEOREM 2.8. (Intermediate values)

1. If f is continuous on [a,b] and f(a) < f(b) then for any y €
(f(a), f(b)) there exists a c € (a,b) such that f(c) = y.

2. Similarly, if f(a) > f(b) then for any y € (f(b), f(a)) there
exists a ¢ € (a,b) such that f(c) =y.

If we want to find the biggest and smallest values of a function we need

the following result:

THEOREM 2.9. (Boundedness)

If f is continuous on [a,b], it is bounded above and below on [a, b].

We also define for a function f: A — R (continuous or not):

1. if there exist a ¢ € A such that f(c) > f(z), Vo € A we say that c is
a maximum point of f on A and that f(c) is the maximum value
of f on A.

2. Similarly, if there exist a ¢ € A such that f(c) < f(z), Vo € A we say
that ¢ is a minimum point of f on A and that f(c) is the minimum

value of f on A.
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Using the continuity on a closed interval and the previous results we also

prove the following theorems:

THEOREM 2.10. (Maz-Min)
If f is continuous on [a,b] then there exist maximum and minimum
points of f on [a,b]. That is,

de,d € [a,b] such that f(c) < f(x) < f(d), Vx € [a,b].

THEOREM 2.11. (Odd degree polynomials)

Any polynomial of odd degree has at least one root.

THEOREM 2.12. (Even degree polynomials)
Any polynomial of even degree with positive highest coefficient is
bounded below.

2.2.3 Uniform continuity

We study now a stronger kind of continuity: A function is uniformly con-

tinuous on an interval A if

Ve >0 35 =109(e) > 0such that [z —y| <0 = |f(z) — f(y)| <e
wherever z,y € A, or equivalently if:
Ve >0 30 =0(¢) >0 such that |z —a| < 0 = |f(x) — f(a)| <e, Va € A.

That is, now J is independent of the point, the same ¢ is valid on the whole

interval.

Example: 2.13.  The function f(z) = 2z — 1 is uniformly continuous
on R.

Example: 2.14.  The function f(z) = x—lz is not uniformly continuous
on (0,1).
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If f is uniformly continuous on [a, b], then it is continuous on [a, b], and

besides:

THEOREM 2.13. (Uniform continuity)

on that interval.

If f is continuous on a closed interval then it is uniformly continuous

— ERC—
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