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DERIVATIVES AND THEIR
APPLICATIONS

This chapter is dedicated to the fundamental tool of Differential Calculus,
the derivative. Some important theorems are proved and many interesting
applications are studied.
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83. Derivatives and their applications

3.1 Differentiability

3.1.1 Definition and basic derivatives

Example: 3.1. The mean velocity in a time interval [t, to+ h], if u(t)

is the position is:
u(to + h) — u(t)
Uy, = N .

Example: 3.2. The slope of a segment joining two points of a graph

y = f(x) of coordinates xy and zy + h has the form:

_ flao+h) — f(xo)
h

Considering the limits of those concepts we say that a function f is
differentiable at a point a if there exists the limit

1 L@t 1) = f(a)
h—0 h

and it is finite. In that case it is called the derivative of f at ¢ and denoted
d
by f’(a) (Newton’s notation) or é(a) (Leibniz’s notation). An alternative
o T~ ()
fia) = lim ———

Example: 3.3. If f(x) = 2% then

definition is:

h)2 — 22 2xh + h?
fl2) = lim EXR = 2whE R

2.
h—0 h h—0 h x

A function f is differentiable on an interval (a,b) if it is differentiable
at all the points of (a,b). The function f’ has as domain the points where

f is differentiable, and it also can be differentiable.

NoTATION: The higher order derivatives of a function are denoted by:
f"(z), f"(x),... f"(z) (Newton’s notation) or by

d’f 3 f d"f

With the definition, the tangent line to the graph of a function y = f(x)
at the point (a, f(a)) is

y=f(a)+ f'(a)(z - a).
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When the limit of the definition does not exist, but the following limits
i L@ S0 ) = fla)
h—0~+ h h—0— h

exist and are finite, they are called respectively right hand derivative and

left hand derivative, that is, the side derivatives of f at a:

Example: 3.4. The derivatives of the most common functions are

obtained easily:

f@)y=a" (neN) ~  fl(z)=na"""
f(z) =sinx ~ f/(x) = cosx
f(z) =cosx ~ f'(x) = —sinx
f(z) = e” o f(z) =e”
f(z) =logx o i) =1/

And, of course, we have that:

THEOREM 3.1. (Continuity)

If f is differentiable at a then it is continuous at a.

That is: if f is not continuous at a point it cannot be differentiable at

that point.

Example: 3.5. The converse is false: f(z) = |z| is continuous but

not differentiable at x = 0.

3.1.2 Basic properties

Usually we do not use the definition to obtain a derivative, we use instead

the following properties:

PROPERTIES OF DERIVATIVES

For f and g differentiable functions:

1. Differentiation is a linear operation: (c¢f) =cf’, (f+¢9) =f"+¢

2. Derivative of a product, Leibniz’s rule: (fg) = f'g+ f¢'.

. 1 /1y =4
3. Derivative of —: (—) = —5- (when g # 0).
g \g g
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i ! /
4. Derivative of a quotient: (£> = M (when g # 0).
g g
Example: 3.6. If f(z)=tanz = Sml‘, then
cosx
2 2
f(z) = w =sec’z = 1 + tan® .
cos?

THEOREM 3.2. (Chain rule)
If g is differentiable at a and f is differentiable at g(a) then

(fo9)'(a) = f'(g(a)) g'(a).

Example: 3.7. If f(x) = sin(logz) then f'(z) = cos(logx) - 1

z°

THEOREM 3.3. (Continuity of inverse)

If f is continuous and bijective on an interval, then f~' is also con-

tinuous in the corresponding interval.

Observe that if f is bijective on an interval, then it is increasing or

decreasing.

THEOREM 3.4. (Inverse function)
If f is a bijective continuous function defined on an interval and it
is differentiable on f~'(b) with f' (f~'(b)) # 0, then f~' is differen-

tiable at b and )

—1\/ _
MNP0}

Observe, that if f (f~!(z)) = = and f~! is differentiable, by the chain

rule

F @) () @) =1

As an application of the theorem of the inverse function, now we can

obtain the derivatives of many other functions, and add them to our list:
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§

§

§

f'(x) = secxtanz
f(x) = — cosec x cotg x
f'(z) = a®loga
ooy L
Filz) = xloga
f/(ﬂi) = qr®!
|
O 1+ 22
f(x) = 11_1,2
f(z) = 1__112

If f(x) = a® = e*!°8% then

f'(z) = e®1°8%]og a = a” log a.

APPLICATIONS
f(z) =secx
f(x) = cosecx
f(z) =a" (a>0)
f(x) =log,z  (a>0)
flz) =z% (aeR)
f(x) = arctanx
f(z) = arcsinz
f(x) = arccosx
Example: 3.8.
Example: 3.9.

If f(z) = arcsinx then

1

fi(z) =

cos(arcsin )

V1—22

— ERC—

[@0cle)
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3.2 Meaning of the derivative

3.2.1 First and second derivatives

We need a definition: A point zp € A is a local maximum [or minimum]|
point of f in A if 3§ > 0 such that xy is a maximum [or minimum| of f in
AN (wo — 9, x0 +5)

THEOREM 3.5. (Zero Derivative)
If zq is a local maximum or a local minimum of f and f is differen-
tiable at x(, then f'(x¢) = 0.

PROOF: For a local minimum, if f(xg) < f(y) for every y € (zg— 9, ¢+
d), then for |h| < o:

Y >0 if h>0,
f($0+h]z_f(x°)<0 if h<O.

Therefore, since the limit exists, it must be zero.

Example: 3.10. The converse is not true: f'(0) = 0 for f(z) = 23

and zero is not a maximum nor a minimuim.

One of the most famous and useful theorems about differentiability is:

THEOREM 3.6. (Rolle)
If f is continuous on [a,b] and differentiable on (a,b), and satisfies
f(a) = f(b), then there is some c € (a,b) such that f'(c) = 0.

PROOF: Since f is continuous on [a,b], it attains its maximum and its
minimum. If both are attained in a and b, then f is constant. On the
contrary, the maximum or the minimum lies in the interior, and by the

previous result the derivative vanishes there.
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THEOREM 3.7. (Mean Value Theorem)
If f is continuous on [a,b] and differentiable on (a,b), then there is

some c € (a,b) such that

f) = fla) _
U C)
PROOF: The function g(x) = f(x) — W (x — a) satisfies all the

hypotheses of Rolle’s theorem.

COROLLARY 3.8.

1. If f is continuous on (a,b) and f'(x) = 0 for every = € (a,b),

then f is constant on (a,b).

2. If f'(x) > 0 [respectively f'(x) < 0] for every x € (a,b), then f
is (strictly) increasing [respectively decreasing| on (a,b), that is

fl@) < fly) Va<z<y<hb.

3. If f'(xz) > 0 for every x € (a,b) and f(a) < 0 < f(b) then the
equation f(x) = 0 has a unique solution on that interval.

APPLICATIONS

1. If for some 6 > 0 we have f'(z) > 0 for € (a — d,a) and f'(x) <0

for x € (a,a + ¢), then a is a local maximum.

2. If for some § > 0 we have f/'(z) < 0 for z € (a — d,a) and f'(z) >0

for z € (a,a + 0), then a is a local minimum.

3. If f’ has the same sign at both sides of a, there is no maximum or

minimum at that point, even when f/(a) = 0.

THEOREM 3.9. (Eztrema with second derivative)

1. If f'(a) = 0 and f"(a) > 0 then f has a local minimum at a.

2. If f'(a) =0 and f"(a) < 0 then f has a local maximum at a.

In the other direction it is not exactly the same:
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THEOREM 3.10.
1. If f"(a) exists and f has a local minimum at a then f”(a) > 0.

2. If f"(a) exists and f has a local maximum at a then f”(a) <0.

Example: 3.11.  f(z) = 2% at the origin.

3.2.2 Strong theorems

In this subsection we prove the famous L’Hépital rule together with two

other important results.

THEOREM 3.11. (Continuity of the derivative)
If f is continuous at a and lim f’(x) exists and is finite, then f’ is
T—a

continuous at a, that is:

f'(a) = lim f'(x).

rT—a

That is: a derivative never has an avoidable discontinuity.

2 in 1
1 0
Example: 3.12.  f(z) = { g sing, 27 o s f1(0)=0.
, x=0.

THEOREM 3.12. (Cauchy Mean Value)
If f and g are continuous on [a,b] and differentiable on (a,b), then

de € (a,b) such that

And if also g(b) — g(a) # 0 and ¢'(¢) # 0 then:
fO) = fla) _ f'(c)

g9(b) —gla)  g'(c)’

This is exactly the mean value theorem if g(z) = .

ProOOF: Apply Rolle’s theorem to
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THEOREM 3.13. (L’Hoépital-Bernoulli rule)
: L B - f(x)
If%l_rg f(z) = }}l_l)lzg({l}) =0 and lim

z—a g'(x)

exists, then

N C—
@) ()

This can be extended to side limits or limits at infinity.

Observation 3.1. L’Hopital’s rule also applies when

lim f(z) = lim g(x) = co.

Tr—ra r—a

PrOOF: We define f(a) = g(a) = 0 if necessary to obtain continuous
functions. By Rolle’s theorem, g(x) # 0 Vz € (a,a + ) for some 6. Apply
now the Cauchy mean value theorem to [a,z] with = € (a,a+ ¢) and obtain
Jday € (a,z) such that:

[(@) _ f(ow)

lim M = lim f(az) = lim ')
g(l') g’ (o) r—a g(x) Aa—ra g’(ax) s g,(y) .

Example: 3.13.

. 1 —-cosx . sinx . cosT 1
lim ——5 — =lim = lim = -,
z—0 T z—0 2z z—0 2 2

3.2.3 Extrema

These are some of the most desired things we usually want to know from a

function. We need some definitions to study them:

If f'(xp) = 0 then x is called critical point of f. The number f(zo) is
called critical value.

Remember that a continuous function on a closed interval always attains
its maximum and minimum values, that is, there exist the maximum and

minimum points.
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To locate the maximum and minimum of a continuous function f on a

closed interval [a,b] we consider the three kinds of points:

1. The critical points of f.
2. The end points a and b.

3. The points = € [a, b] without derivative.

Finally we compare the value of the function at those points.

Example: 3.14.  f(z) = |22 — 1| on [-2.1], has the critical point 0,
f(0) =1, at the end-points: f(—2) =3, f(1) = 0; a point without derivative
is: —1, f(=1) = 0, so the maximum point is —2, with maximum value 3,

and the minimum point is —1, with minimum value 0.

If the set is not closed, or not bounded, or the function is not continuous

at some point, the existence of maximum and minimum is not guaranteed.

— ERC-
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