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LOCAL STUDY OF A
FUNCTION

We study now the graphic representation of a function and some other appli-
cations of the derivatives, arriving to the local approximation using a Taylor

polynomial.
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4.1 Graphic representation

4.1.1 Convexity

A set in R? is said convex if given any two points in the set, the segment
joining those points is inside the set.

A function f is said to be convex on the interval [a, b] if the set {(z,y) €
R? :a<2<b,y> f(r)}is convex.

A function f is concave if —f is convex.

Alternative definitions

1. f is convex on the interval [a,b] if Vx € [a, b] we have:
f(x) < fla) + ?(fv—a),

2. f is convex on the interval [a,b] if Va € [a, D]

f() = fla) _ f(b) = f(a)

T —a b—a

3. f is convex on the interval [a,b] if Vz,y € (a,b) and 0 < A < 1:

72+ (1= Ny) <A@ + (1= N f ).

THEOREM 4.1. (Convexity)

If f is convex and differentiable at a, then the graph of f is above the
tangent line at the point (a, f(a)) on a neighbourhood of a, except
for the tangent point. In particular, if f is differentiable at a and b,
then:

f'(a) < f(b) Va<b.

The first and second derivatives help us to study convexity:
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THEOREM 4.2.

1. If f is differentiable and f’ is increasing on [a,b|, then [ is

convex on [a,b).

2. If f is differentiable and f’ is decreasing on [a,b], then f is

concave on [a,b).

COROLLARY 4.3.
1. If f" exists and f"” > 0 on [a,b], then f is convex on |[a,b].

2. If f" exists and f” < 0 on [a,b], then f is concave on [a,b).

A point z( is an inflection point of a function f if the convexity changes
at that point, i.e. (id est), f is convex on one side (near the point) and

concave on the other side.

If xg is an inflection point of f and the function is twice differentiable at
that point, then f”(xg) = 0.

Example: 4.1. 23 has an inflection point at 0, but z* does not.

In order to find the intervals of convexity of a function, as well as the
inflection points, we determine the sign of the second derivative on the dif-

ferent intervals.

4.1.2 Asymptotes

An asymptote of a function f as x — oo is another function g such that

lim (f(z) —g(x)) =0,

T—00

and g is asymptote as x — —oo if

lim (f(z) - g(z)) = 0.

T—r—00

We are going to study only asymptotes that are straight lines:

1. f has a vertical asymptote at x = z( if some of the side limits at
that point is infinite:
limi f(z) = £o0.

ZC—)CCO
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2. f has the horizontal asymptote y = a as x — oo if lim f(x) = a.
T—00

The asymptote is for z - —oco if lim f(x) = a.
T——00

3. f has a slant (oblique) asymptote y = mx + b as © — oo if the
following limits are finite:

m=tim 2% 2 i (f(:v)—mx).

r—00 I T—00

The asymptote is as © — —oc if this happens when the limits are taken

for x — —c0.

Observation 4.1. 1. The vertical asymptotes can be at the end points
of the domain of f, if they are finite, and never at points where f is

continuous.

2. The graph of f can cut a horizontal or slant asymptote, but never a

vertical asymptote.

3. The polynomials that are not a straight line (degrees 0 or 1) never

have straight asymptotes.

2
Example: 4.2. f(x)= * 1 has the horizontal asymptote y = 1 as
x

2 _
x — oo and the vertical asymptotes z =1, z = —1.

Now we can plot graphs, studying f in the following steps:

CONSTRUCTION OF GRAPHS

1. Domain and symmetries.

2. Asymptotes.

3. Critical points and points without derivative.
4. Increasing and decreasing intervals.

5. Local extrema.

6. Convexity and concavity intervals.

7. Inflection points.
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4.2 Other applications of the derivative

4.2.1 Implicit derivative

Some curves are defined easily using an implicit expression, like 22 +y? = 1,

but we need two functions to describe it explicitly.

If we are sure that the expression defines one or more functions in some
domain we can differentiate directly in that formula, that is, implicitly and

then clear 3/:

Example: 4.3. In the formula 222+y? = 4 (an ellipse) we differentiate

with respect to z and obtain:

2
4z + 2yy =0, y':——x
y

4.2.2 Logarithmic derivative

_ f@)
o)

apply this to simplify the calculation of some derivatives of products and

We can

1
Remember first that log’ |z| = - and that (log f(z))’

quotients:

1. Derivatives of products: If f(z) = gi(z) - g2(z) - - - gn(z) then

MUI—ZMM =>f@=2%g

2. Derivatives of quotients: If f(z) =

log |f(z)| = Zlog|gj )| — Elogmk f’(x) _ QJ(iU; B Z
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4.3 Taylor polynomial

4.3.1 Construction

We want to approximate a function near a given point by a polynomial. The
idea is to impose that the successive derivatives of the polynomial and the

function coincide at the point.
For the point £y = 0 and the polynomial of degree n:

n
Po(x) = ag + a1z + agx® + - + apa™ = Z apx”,
k=0

the values of the derivatives at o = 0 are easy:

PY(0)
k!

If now we consider a general point g, writing the polynomial as

P0)=ka — a=

Py(z) =ag+ai(x— ) +az(x—20)? + -+ an(z — 29)"
n
= Zak(x - il?o)k-
k=0

The value of the derivatives at xq is:

Pf) &)
k!

This suggests to approximate a function (that can be hard to manage) near

P,f)(fbo) = k! ag — ap =

a point xg by a polynomial with the same derivatives up to the n-th order.

This means that:
S (o)
K

ap =

So we define the Taylor polynomial of degree n of f near the point
o, as

- l‘o)k.

n o ek)
Paso () = 3 0,
k=0 '

When the point is zo = 0 it is also known as McLaurin polynomial.

A polynomial of degree n is determined with n 4+ 1 data, so the Taylor
polynomial is the unique polynomial of degree less than or equal to n with

that property.
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Example: 4.4. Let f(x) = e®. Since f*(0) = 1 ¥k > 0, the Taylor
polynomial is

n $k‘
Poof(z) = R
k=0

2
In the picture we see f(z) = e and Poof(z) =1+ 2+ % .

20F

MAIN TAYLOR POLYNOMIALS

In the following examples we take xg = 0.

) $3 :Es ( 1)n$2n+1
sinz ~ x—§+§+-”+ 2n+ 1)
) 51,‘2 £4 (_1)111,211
cosT ~ —E+E+---+ (2n)!
1
o Itz a2
11—z
$2 .T3 (_1)n+1xn
log(1 2 4z N
og(1+x) ~ T 2+3+ + -
An example with zg = 1 is:
_12 _13 _1n+l — 1"
S () ) N ) )
n

THEOREM 4.4. (Taylor)
If f and its derivatives up to order n exist at xg, then

lim f(x) — Pn,a:of(x)

T—x0 (x — o)™

= 0.
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That is, the polynomial approaches the function near the point, and this

approximation is better as the degree of the polynomial is bigger.

Example: 4.5. In the following picture we see the function f(z) =
sin x compared with its Taylor polynomials at the origin of degrees 1, 3, 5
and 7.

We say that a function is small-o of g(x) as © — ¢ and write f(x) =

o(g(x)) if
f(z)

lim -~ = 0.
s (1)

This is Landau’s notation.

We can write then,

f(x) = Py f(z) + o(Jx — z0]™) for © — xg.

Example: 4.6.

cosx — 1 = o(sinx) forz =0
22

ezzl—i—x—i—?—i—o(m‘?) forz — 0

logz = o(x) for z — oc.
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4.3.2 Properties

THEOREM 4.5. (Polynomials)
If P and @ are two polynomials in powers of (x — xg) of degree less

than or equal to n and are equal up to order n at xq, then P = Q).

The expression equal up to order n means that:

P(z0) = Q(z0), P'(z0) = Q' (z0), P"(m0) = Q"(x0),.-.,P™ (x0) = Q" (w0).

And observe that with n + 1 data we determine in an unique way a polyno-

mial of degree n.

COROLLARY 4.6. ()

If P is a polynomial of degree at most n in powers of (x — o) that
is equal up to order n to an n-times differentiable function f at x,
then it is the Taylor polynomial of f at xg of order n.

This means that we can obtain a Taylor polynomial using different meth-
ods. For example, the Taylor polynomial of degree n at x = xg of a polyno-
mial of degree less than or equal to n is the same polynomial, but written

in powers of (z — ).

Example: 4.7. Taylor polynomial for arctanz: We start with the

derivative:
1 —1 n$2n+2
arctan'(¢) = 70— =1- 2?4t =2+ () + Y 1)+ ~
Then:
T dt :L‘3 :L‘5 :L‘7 x2n+1 T (—1)nt2n+2dt
arctan(xr) = — =4 T (=17 /
() /0 1+ ¢2 3 5) 7 ( )2n+1 Jo 14+¢2
Observe that v omin i -
/ t m dt < / t2n+2dt — |$| nt
o 1+ 2| 0 on+3°
Then:
/‘I (—1)"e*H2dt
. 141¢2
0 J—
3131_I>% r2n+l = 0.
So, the Taylor polynomial of arctan x is:
3 5 7 on+1
T T T T
Py1o(x) =0 — %+ = — =4 (=1)"

3 5 7 n+1"
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We call Taylor remainder of order n at = zg of the function f to

the difference:
Rn,:c()f(w) = f(w) - meof(w)y
and then R, 5, f(z) = o ((z — xo)"™).

THEOREM 4.7. (Taylor’s theorem)
Suppose that f, f', f”,..., f*t1) are all defined on [z, x| (if x > 0,
and on [z, x| if x < x¢) and consider the Taylor remainder R,, ,, f(x).

Then:

n+1)
oo 5) = oo = )",

for some t € (xg,x) (ort € (x,x0) if x < xg). This is the Lagrange

form of the remainder.

Example: 4.8.  Consider f(x) = sinz. In order to estimate sin 1 using

the Taylor polynomial of degree 5, we see that

1
|R50f(1)] < @l
and then

U S O ol < 1
nl=1--+-—+¢ el < =—
° 6 120 ' ° =720

We obtain the value sin 1 ~ 0.8416, with an error of 0.0014. The exact value
with 6 significative figures is 0.841471.

4.3.3 Applications

1. Calculus of limits: We can approximate functions that appear in

limits, using the Taylor polynomial of the proper degree.

Example: 4.9.

i €057 = e ta i L —2%/2+0(z?) — (1 + 2 +22/2+ o(z?)) + z
z—0 x2 z—0 2
2 2
= lim —— ") + ola’) =—1L

z—0 $2
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2. Characterization of extrema: Using Taylor’s theorem we can char-

acterize the critical points according to the first nonzero derivative.

THEOREM 4.8. (Eztrema with Taylor)
Assume that f'(xo) = f"(w0) = --- = fF" (o) = 0, f¥(w0) # 0,
k > 1. Then

a) If k is even and f*)(z¢) > 0, the point = x is a local mini-

maurn.

b) If k is even and f*(x¢) < 0, the point x = xq is a local maxi-

maurn.

c¢) Ifk is odd, the point x = x¢ is not a maximum nor a minimum,

it is an inflection point.

The idea is that near the point x = xg:

f(@) ~ f(zo) + 1 (z — 20)".

If k is even, (z — x0)¥ is positive and f(x) is bigger or smaller than
f(z0) depending on the sign of f*)(x). If k is odd then the last term

changes sign at both sides of x = xg.

— ERC—
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