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SEQUENCES AND SERIES OF
REAL NUMBERS

We study in this chapter the sequences of numbers with their convergence
and limits and also the series of numbers, that are sums of all the terms of

a sequence. What we know about functions will be useful here.
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§5. Sequences and series of numbers

5.1 Sequences of numbers

5.1.1 Definitions and properties

A list of infinite numbers in a precise order is called a sequence. It is the
image of a function whose domain is the set of the natural numbers:

f: N = R, f(n) = ay,.
The sequence is denoted by

{an}zo:j[ — {ala asz, ag, - }

It also may start with ag or ag. The general term is a,, = f(n).

We are interested in the convergence, and we say that the sequence
{an}72, converges to the limit ¢ (¢ finite) if:

Ve >0 3N €N such that n > N = |a,—¢| <e, we write lim a, = ¢.

n—o0

We say that {a,}7° ; converges if it converges to some finite ¢ and that it
diverges if it does not converge to any finite limit.

1
Example: 5.1. lim — = 0, and the two sequences a, = (—=1)", b, =
n—oo N
2n + 3 diverge both.

THEOREM 5.1. (Uniqueness of the limit)

If the limit of a sequence exists, then it is unique.

We need some more definitions:

1. A sequence {a,}22, is increasing if a,+1 > a, Vn € N, it is also
called non decreasing. It is strictly increasing if a,+1 > a,
Vn e N

2. {an}22, is decreasing if a,+1 < ap, Vn € N, it is also called non

increasing. It is strictly decreasing if a,,11 < a, Vn € N.

3. {an}22, is bounded above if a,, < C Vn € N for some C € R. It is
bounded below if a,, > ¢ Vn € N for some ¢ € R.



Differential Calculus 59

4. {a,}5°, is a recurring sequence if each term is given by a function

of some previous terms, for example:

an+1 =glay), n>1, a =K.

THEOREM 5.2. (Monotonous sequences)

1. If {a,}5°, is increasing and bounded above, then it converges.

2. If {an }22 is decreasing and bounded below, then it converges.

1
Example: 5.2. an = nt is increasing, since if a, = f(n) then
n
1
fl(x) = CES)Ek Moreover a, < 1 for every n. Thus the sequence is
TR . 1+t
convergent. The limit is lim a, = lim —— =
n—00 t—0 1+ 2t

THEOREM 5.3. (Boundedness)
Any convergent sequence is bounded.

A subsequence is a sequence extracted from another given sequence,

where the terms are in the same order of the original sequence.

THEOREM 5.4. (Subsequences)
Any subsequence of a convergent sequence is convergent to the same
limit of the original sequence. If a sequence has subsequences with

different limits, the sequence diverges.

Example: 5.3. a, = (—1)" arctann diverges because ag, — % while
-7

agn41 — DN

LEMMA 5.5. (Rising sun lemma)
Any convergent sequence has a subsequence that is either non in-

creasing or non decreasing.

For the proof: The number n is a peak point of {a,}7° ; if a,, < ay, for

m > n (i.e. a, receives the rising sun light).
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THEOREM 5.6. (Bolzano-Weierstrass)

Any bounded sequence has a convergent subsequence.

Any non-
bounded sequence has a subsequence that tends to co or to —oc.

Example: 5.4.

a, = (—1)"arctann is bounded and divergent and
the subsequence asg,, is convergent to /2.

A number k is an accumulation point of a set A € R if:

Ve>0 JacA, a#k:|k—a<e

Example: 5.5. 5 and — 5 are accumulation points of a,, = (—1)™ arctann

Even more, a new kind of sequence is useful to study convergence: We
say that {a,}5°, is a Cauchy sequence if:

lim |ap, —ay| = 0.
m,n— 00

THEOREM 5.7. (Cauchy sequences)

A sequence converges if and only if it is a Cauchy sequence.

Example: 5.6.

a, = (—1)" is not a Cauchy sequence because |a,, —
an+1] =2 VneN.

5.1.2 Limits

PROPERTIES

If lim a, = /¢ and lim b, = m, both finite, then:
n—oo n—oo

1. lim (an +by,) =L+ m.

n—oo

2. lim a, -b, =4 -m.
n—oo

3. lim 2 = ﬁ, if m # 0 and b,, # 0 for n big enough.
n—oo by, m
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4. If h is a continuous function at £, then

lim h(a,) = h(lim a,) = h(?).

n— oo n—oo

TECHNIQUES FOR LIMITS

1. If a,, = f(n), where f is a function defined on R (or at least on [M, o)
for some M), then
g, on = Ji10, F12)
whenever this last limit exists. We can use the techniques we know to

calculate the limit of f, such as the sandwich lemma, I.’Ho6pital’s rule
or Taylor’s theorem.

Example: 5.7.
cos(3z)—1

. n? 1 1/2? _ limz%OT _ ,—9/2
7}1_)11010 (cos(3/n))" = ili% (cos(3z)) =e =e 7=

THEOREM 5.8. (Stolz criterion)

If one of the following properties is true
a) {b,}>2, Is strictly increasing with lim b, = oo, or
n—oo

b) {b,}>2, is strictly decreasing with li_>m ap = lim b, =0,

n— oo
then
lim an _ lim dntl = Gn
n—o0 by, n—oo byl — by
whenever this last limit exists.
Example: 5.8.
g LT 242t 2n 1 _
n1—>n;o on o n1_>n§o ont+l _9n
3. Stirling’s formula:
|
lim — =1

n—co (n/e)"/2mn

It is useful when factorials are involved.

Example: 5.9.
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5.1.3 Recurring sequences

THEOREM 5.9. (Recurring sequences)
If ap+1 = g(ayn), where g is a differentiable function defined on R,

then it is monotonous if ¢’ > 0 and oscillating if g’ < 0.

This is true because using the mean value theorem we obtain:
ani1 — an = g(ay) — glan—1) = ¢'(¢)(ap — an_1), for some c.

Even more, we have:

THEOREM 5.10. (Fized point theorem)

If any1 = g(an), where g is a differentiable function defined on R,
with |¢'(z)| < XA < 1 on some interval I C R, and ay, € I it k > M
for some M, then {a,}?°  is a convergent sequence and the limit ¢

is the only fixed point of g, that is { = g(¢), on I.

Example: 5.10.  a,+1 = v/2a, with a; = 1 is increasing, since ¢'(z) =
1
—— and as —a; = v2—1 > 0. Tt is moreover bounded (by induction)

V2z

an, < 2. It is therefore convergent, and the limit satisfies £ = V20, that is
f=0o0rf¢{=2. Butf{>a, =1,s0 lim a, = 2.

n—oo

Example: 5.11. Gn+1 = 1 — (%n, with a; = 10, is convergent since
1 1
lg'(x)] = B (oscillating since ¢’ < 0) and the limit satisfies £ = 1 — 2 that

is, lim a, = —.
n—00 3

COBWEB DIAGRAM

The behaviour of a recurring sequence can be represented in a picture,
known as cobweb diagram. Here we have two examples, one monotonic and

the other oscillating.

Example: 5.12. an+1 = V2a,, a1 = \/5, lim a, = 2.
n

— 00
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25F

Example: 5.13.

14F
x
1 —
v g
2 A

1-x/2
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5.2 Series of numbers

5.2.1 Preliminaries

(o)

A series is the sum of all the terms of a sequence: Z an. It is convergent
n=1

if the sequence of the partial sums is convergent, that is, if:

N
lim E an, = L,
N—oo

n=1

for some finite L, this is called the sum of the series. In this case we say
that the sequence {a,}5° ; is summable. If L is not finite or if it does not

exist the series is divergent.

o0
Example: 5.14.  The series E r™ is called geometric series of ratio

n=1
r. We have:
o
" o opNAL r
Irf<1 = E r" = lim = ~~ converges,
1 N—oo r—1 1—7r
n=

o0
r|>1 = Zr" ~ diverges.

n=1

As a direct application of the Cauchy sequences we have the following:

THEOREM 5.11. (Cauchy criterion)
The sequence {a,}5° | is summable if and only if

lim (an+1 +apy2+---+ am) = 0.
n— 00

This is difficult to compute, but it has the following consequence:

THEOREM 5.12. (Remaind criterion)

o0
If a series g an converges, then lim a, = 0.
n—r o0

n=1

This is a necessary condition, but it is not enough to obtain convergence:
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(o)
1 .
Example: 5.15. The harmonic series, E —, satisfies this criterion,
n

n=1

but it diverges.

In general, for a convergent series it is not possible to obtain the value
of the sum, but it is essential to know if it converges or not if we want to

apply it in any numerical approximation.

To determine the convergence we have convergence tests, that we

study in the following sections.

5.2.2 Series of non-negative terms

N 9]
If a, > 0 Vn € N then the sequence {Z an} is increasing, so Zan
. . n=1 NeN
converges if the set of the partial sums is bounded.

n=1

THEOREM 5.13. (Comparison test)

Assume 0 < a,, < b, for every n > k and some k. Then
o0 o0
Z b, converges = Z a, converges,

oo [ee]
Zan diverges = an diverges.

THEOREM 5.14. (Ratio test)

a
When lim L — ¢ then
n—oo  Qy

[e.e]

<1 = Zan converges,

o
£>1 = Zan diverges,

if ¢ =1 the test is inconclusive.

This is also known as D’Alembert’s criterion.

[e.o]
3" . . An+1 . 3
Example: 5.16. Z o] converges since nh_{rolo paa nh—>Holo i

n=1

0<1.
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THEOREM 5.15. (Root test)
If we have lim a, = ¢, then

n—oo
o
<1l = Zan converges,

o0
(>1 = Zan diverges,

if ¢ =1 the test is inconclusive.

This last one is known as Cauchy’s criterion.

o0
2n 4+ 1\n .. . .
Example: 5.17. 2:1 ( - ) diverges since nh_)rro10 va, =2> 1.
n=

The root test is stronger than the ratio test: whenever the ratio test
determines the convergence or divergence of a series, the root test does too,

but not conversely. Moreover

lim ¢ —  lim va, =L

n—00  (QAp n—oo

Thus if we try the ratio test and get ¢ = 1 as limit, it is useless to

computing the root test.

THEOREM 5.16. (Limit comparison test)
If lim Z—n = ¢, with 0 < ¢ < oo, then:

n— oo n

o0 o0
1. The series Z an and Z b, both converge or both diverge.

o0 o0
2. If ¢c = 0 and an converges, then Zan converges and if

o0 o
Z a, diverges, then Z b, diverges.

3. If c = 00 and Z by, diverges, then Z ay, diverges and if Z an

o0
converges, then E by, converges.
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THEOREM 5.17. (Integral test)

If f is a continuous positive decreasing function on [0,00) and a,, =

f(n) Vn, then the series Z ay, converges if and only if the following

limit exists:
A

/OO f(x)dx = lim f(x)dx.
1 A—oo Jq

(e 9]

1
Example: 5.18. The p-harmonic series, defined by Z — are a
n
generalization of the harmonic series (where p = 1). Using the integral test

we obtain that:

o0
1
p>1 = Z v converges,

oo
1
p<1l = Z - diverges.

[e.e]
Example: 5.19. Z arcsin(1/+y/n) diverges since lim a—? =1, and
— n—co n—1/2

the 1/2-series diverges.

5.2.3 Absolute convergence of series

If a, < 0 Vn > K for some K, it can be studied like a series of positive
terms, taking the sign outside the sum. The problem arises if there are
infinite positive terms and infinite negative terms. To study it we define two

kinds of convergence:

[ee]
A series Z an, with a,, € R is absolutely convergent if the series of ab-

oo
solute values, E |an|, converges. The series is conditionally convergent

if it converges but not absolutely.

THEOREM 5.18. (Absolute convergence)
If a series converges absolutely, then it converges. Besides, it is ab-
solutely convergent if and only if the series of its positive terms and

the series of its negative terms both converge.




68 §5. Sequences and series of numbers

Some sequences that are easy to study are the alternating series, that
o0

o0
have the form Z(—l)"an, where a,, > 0. If the series Z ay, converges then

n=1 n=1
o0
Z(—l)”an also converges, but the converse is false.
n=1
THEOREM 5.19. (Leibniz criterion)
If the sequence {a,} is decreaasing with lim a, = 0, then the series
o n—oo
Z(—l)”an converges.
n=1
o~ (=D
Example: 5.20. Z ——— converges conditionally.
n
n=1

Conditional convergence is very strange: If we have a rearrangement
of a sequence, that is, a sequence with the same terms but in different order,
then:

THEOREM 5.20. (Conditional convergence)

o0
If Z an converges but not absolutely, then for any o € R there is a
1

[e.e]
rearrangement {b,}>° ; of {a,}° , such that Z by, = a.
1

But when we have absolute convergence:

THEOREM 5.21. (Absolute convergence)
[e.o]

If Z an converges absolutely, and {b,}7° | is any rearrangement of
1

{an}>2, then Z b, also converges absolutely and Z ap, = Z by,.
1 1 1
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SOME EXPLICIT SUMS

1. Geometric series:

> 1 > rk
n __ n __ o
nz:%)r =T ;r =T if |r] <1.

oo
2. Arithmetic-geometric series: Z(an + b)r". We use

n=0
0o . ” ‘
an :(l—r)Q’ if |r] < 1.
n=1
Thus
> ar b
b)r"™ = .
2 (ot = e
3. Telescopic series:
Zl(an —bn) = lim by —b.

— ERC—

[@ocle)




