Universidad Carlos III de Madrid Departamento de Matemáticas

DIFFERENTIAL CALCULUS

Degree in Applied Mathematics and Computation

Chapter 6

Elena Romera

6

SEQUENCES AND SERIES OF FUNCTIONS

We study in this short chapter the sequences and series of functions, leading to the study of Taylor series.

Contents

6.1	Sequences of functions	72
6.2	Series of functions	73
6.3	Taylor series	75

6.1 Sequences of functions

A sequence of functions is a sequence whose elements are functions: $\{f_n\}_{n\in\mathbb{N}}$. For each value x, $\{f_n(x)\}_{n\in\mathbb{N}}$ is a sequence of numbers, so we have to study infinite sequences of numbers when we study a sequence of functions.

Some properties are surprising:

1. f_n continuous $\forall n \in \mathbb{N}$ does not imply $\lim_{n \to \infty} f_n(x) = f(x)$ continuous.

Example: 6.1.

$$f_n(x) = \begin{cases} x^n, & 0 \le x < 1, \\ 1, & 1 \le x, \end{cases} \longrightarrow \lim_{n \to \infty} f_n(x) = f(x) = \begin{cases} 0, & 0 \le x < 1, \\ 1, & 1 \le x, \end{cases}$$

2. f_n differentiable $\forall n \in \mathbb{N}$ does not imply $\lim_{n \to \infty} f_n(x) = f(x)$ differentiable.

Example: 6.2.

$$f_n(x) = \begin{cases} -1, & x \le \frac{-1}{n}, \\ \sin \frac{n\pi x}{2}, & \frac{-1}{n} \le x \le \frac{1}{n} \\ 1, & \frac{1}{n} \le x \end{cases} \longrightarrow \lim_{n \to \infty} f_n(x) = f(x) = \begin{cases} -1, & x < 0, \\ 0, & x = 0, \\ 1, & x > 0. \end{cases}$$

3. f_n with the same area below $\forall n \in \mathbb{N}$ does not imply $\lim_{n \to \infty} f_n(x) = f(x)$ with the same area.

Example: 6.3.

$$f_n(x) = \begin{cases} 2n^2 x, & 0 < x \le \frac{1}{2n}, \\ 2n - 2n^2 x, & \frac{1}{2n} \le x \le \frac{1}{n} \\ 0, & \frac{1}{n} \le x \le 1, \end{cases} \longrightarrow \lim_{n \to \infty} f_n(x) = f(x) = 0$$

In all these examples we have that:

$$\forall \varepsilon > 0, \ \forall x \in \text{Dom}(f), \quad \exists N(\varepsilon, x) : \quad n > N \implies |f_n(x) - f(x)| < \varepsilon.$$

So we have to study different kinds of convergence:

1. A sequence $\{f_n(x)\}_{n\in\mathbb{N}}$ converges punctually to f on $\mathrm{Dom}(f)$ if

$$\lim_{n \to \infty} f_n(x) = f(x), \quad \forall x \in \text{Dom}(f).$$

2. A sequence $\{f_n(x)\}_{n\in\mathbb{N}}$ converges uniformly to f on Dom(f) if

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad n > N \quad \Longrightarrow \quad |f_n(x) - f(x)| < \varepsilon \quad \forall x \in \text{Dom}(f).$$

Uniform convergence \implies punctual convergence (the converse is false).

The convergence of the previous examples is not uniform.

Theorem 6.1. (Uniform convergence of sequences)

1. If $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a,b] and f_n and f are all integrable on [a,b], then:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x)dx.$$

- 2. If $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a,b] and each f_n is continuous on [a,b], then f is continuous on [a,b].
- 3. If $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of differentiable functions on [a,b] and converges punctually to f and $\{f'_n\}_{n\in\mathbb{N}}$ converges uniformly on [a,b] to some continuous function g, then f is differentiable on [a,b] and

$$f'(x) = g(x) = \lim_{n \to \infty} f'_n(x).$$

Observe that the differentiability needs more conditions.

Example: 6.4. $f_n(x) = \frac{1}{n}\sin(n^2x)$ converges uniformly to f(x) = 0 and all the functions are differentiable but: $f'_n(x) = n\cos(n^2x)$ does not tend to zero.

6.2 Series of functions

A series of functions is the sum of the terms of a sequence of functions, $\sum_{n=1}^{\infty} f_n.$

The series $\sum_{n=1}^{\infty} f_n$ converges uniformly to f on A if the sequence of the partial sums converges uniformly to f on A.

Theorem 6.2. (Uniform convergence of series)

1. If $\sum_{n=1}^{\infty} f_n$ converges uniformly to f on [a,b] and f_n and f are all integrable on [a,b], then:

$$\int_{a}^{b} f(x)dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x)dx.$$

- 2. If $\sum_{n=1}^{\infty} f_n$ converges uniformly to f on [a,b] and each f_n is continuous on [a,b], then f is continuous on [a,b].
- 3. If $\sum_{n=1}^{\infty} f_n$ converges punctually to f on [a,b] and $\sum_{n=1}^{\infty} f'_n$ converges uniformly on [a,b] to some continuous function, then f is differentiable on [a,b] and

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x), \quad \forall x \in [a, b].$$

THEOREM 6.3. (Weierstrass M-test)

Consider $\{f_n\}_{n=1}^{\infty}$, a sequence of functions defined on A and $\{M_n\}_{n=1}^{\infty}$ a sequence of numbers with $|f_n(x)| \leq M_n$, $\forall x \in A$. If $\sum_{n=1}^{\infty} M_n$ converges then $\sum_{n=1}^{\infty} f_n$ converges uniformly on A and $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely to the function:

$$f(x) = \sum_{n=1}^{\infty} f_n(x).$$

Example: 6.5. The series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ converges uniformly because:

$$\frac{\sin nx}{n^2} \le \frac{1}{n^2},$$

and the 2-harmonic series converges.

6.3 Taylor series

A power series is a sum of the form

$$S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Also, we define for a function f that admits infinite derivatives its **Taylor** series centered at x_0 as the power series:

$$\sum_{n=0}^{\infty} \frac{f^{n}(x_0)}{n!} (x - x_0)^n.$$

This is a generalization of the Taylor polynomial, so if the Taylor remainder $R_{n,x_0}f(x)$ tends to zero when $n \to \infty$ this coincides with f and we have:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

A power series does not converge usually on \mathbb{R} , the set of points where it converges is called **convergence set**; it is always a symmetric interval centered at x_0 : $(x_0 - R, x_0 + R)$, including or not the end-points. The number $R \in [0, \infty]$ is called **radius of convergence**.

Example: 6.6.
$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots,$$
 $-1 < x \le 1$. The radius in this case is $R = 1$.

THEOREM 6.4. (Taylor series)

If the numeric series $\sum_{n=0}^{\infty} a_n (a-x_0)^n$ converges and $0 < r < |a-x_0|$, then, the series $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$ converges uniformly and absolutely on the interval $[x_0-r,x_0+r]$. Besides, the same happens with the series $\sum_{n=1}^{\infty} a_n n(x-x_0)^{n-1}$ and f is differentiable with derivative:

$$f'(x) = \sum_{n=1}^{\infty} a_n n(x - x_0)^{n-1}, \quad \forall x : |x - x_0| < |a - x_0|.$$

This means that any convergent power series is a Taylor series. To obtain the radius of convergence we have the following result:

THEOREM 6.5. (Cauchy-Hadamard formula)

If one of the following limits exists:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|, \qquad \lim_{n \to \infty} \sqrt[n]{|a_n|},$$

(if both exist they are equal) and L is the value, then the radius of convergence R of the power series $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ is $R=\frac{1}{L}$, with the convention $1/0=\infty,\ 1/\infty=0$.

In fact, the limits that appear in this formula are the **limits superior**. The limit superior exists always and is equal to the usual limit if the limit exists. It is defined by (sup means supremum):

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \sup \{a_n, a_{n+1}, a_{n+2}, \dots\}.$$

Example: 6.7. For $a_n = (-1)^n$ we have: $\limsup_{n \to \infty} a_n = 1$.

SOME TAYLOR SERIES

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots, \qquad x \in \mathbb{R}.$$

•
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots, \qquad x \in \mathbb{R}.$$

•
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots, \qquad x \in \mathbb{R}.$$

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots,$$
 $-1 < x < 1.$

•
$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots, \qquad -1 < x \le 1.$$

Taylor series are the most important of the power series because:

THEOREM 6.6. (Convergent power series)

If a power series centered at a point x_0 converges, then it is the Taylor series of some function f(x) centered at x_0 .

- ERC-

