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SEQUENCES AND SERIES OF
FUNCTIONS

We study in this short chapter the sequences and series of functions, leading
to the study of Taylor series.
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72 §6. Sequences and series of functions

6.1 Sequences of functions

A sequence of functions is a sequence whose elements are functions:
{fn}tnen. For each value z, {f,(z)}nen is a sequence of numbers, so we

have to study infinite sequences of numbers when we study a sequence of
functions.

Some properties are surprising:

1. fn continuous Vn € N does not imply lim f,(z) = f(z) continuous.
n— o0

Example: 6.1.
", 0<zr <1 0, 0<z <1
— ) —_ 9 _> l- — — ) - 9y
fu(2) { L l<e Aim fo(2) = f(2) { L l<s
2. f, differentiable Vn € N does not imply lim f,(z) = f(z) differen-
n— oo
tiable.
Example: 6.2.
—1, r< =L —1, =<0,
fu(x) = Slnn_;rx’ _Tl_$§% _>nh_>rgofn($)_f($): 0, z =0,
1, % <z 1, >0

3. fn with the same area below Vn € N does not imply li_>m fulx) = f(2)

with the same area.

Example: 6.3.
2n’x, O0<a< %,

fo@)={ m-onte, E<o<i — lim fu(x) = f(z) =0
0, L<g<a,

In all these examples we have that:

Ve >0, Vo € Dom(f), 3IN(e,z): n>N = |fu(z)— f(z)]<e.
So we have to study different kinds of convergence:

1. A sequence {f,(x)},en converges punctually to f on Dom(f) if

Jim fu(2) = f(x). Vo € Dom(f)
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2. A sequence {f,(z)}nen converges uniformly to f on Dom(f) if

Ve>0 3IN(e): n>N = |fu(z)— f(z)|<e Vz e Dom(f).

Uniform convergence = punctual convergence (the converse is false).

The convergence of the previous examples is not uniform.

THEOREM 6.1. (Uniform convergence of sequences)

1. If { fu}nen converges uniformly to f on [a,b] and f, and f are
all integrable on [a, b], then:

/a @) = Tim / "t (2)de.

2. If {fn}nen converges uniformly to f on [a,b] and each f, is

continuous on |a,b], then f is continuous on [a, b].

3. If { fn}nen Is a sequence of differentiable functions on [a,b] and
converges punctually to f and {f] }nen converges uniformly on
[a,b] to some continuous function g, then f is differentiable on
[a,b] and

fl(@) = g(x) = lim f(z).

n— oo

Observe that the differentiability needs more conditions.

Example: 6.4. f,(z) = 1sin(n’z) converges uniformly to f(z) = 0
and all the functions are differentiable but: f/(x) = ncos(n?z) does not

tend to zero.

6.2 Series of functions

A series of functions is the sum of the terms of a sequence of functions,
o0

> I

n=1

(o)

The series Z fn converges uniformly to f on A if the sequence of
n=1
the partial sums converges uniformly to f on A.
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THEOREM 6.2. (Uniform convergence of series)

1. If Z fn converges uniformly to f on [a,b] and f,, and f are all
n=1
integrable on [a, b], then:

b o b
/a f(x)dx:n; /a fo(z)dz.

o
2. If Z fn converges uniformly to f on [a,b] and each f, is con-
n=1
tinuous on [a, b, then f is continuous on [a,b).

[e.e] o0
3. If Z fn converges punctually to f on [a,b] and Z fl con-
n=1 n=1
verges uniformly on [a,b] to some continuous function, then f

is differentiable on [a,b] and

Py =3 ful@), Ve e labl.

THEOREM 6.3. (Weierstrass M-test)
Consider { f,}2° ,, a sequence of functions defined on A and {M,,}5° ,

o0
a sequence of numbers with |f,(z)| < M,, Vx € A. IfZMn con-

[e.e] [e.e] n=l
verges then n converges uniformly on A and fn(x) converges
g 8 8

n=1 n=1
absolutely to the function:

fl@) =" falx).
n=1

sin nx

o0
Example: 6.5. The series Z

n=1

5— converges uniformly because:
n

and the 2-harmonic series converges.
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6.3 Taylor series

A power series is a sum of the form

S(x) = Z an(x — x0)".
n=0

Also, we define for a function f that admits infinite derivatives its Taylor

series centered at zy as the power series:

0 fn) (s
Zf (| 0)(.T—.Z'0)n.
n=0

n:

This is a generalization of the Taylor polynomial, so if the Taylor remainder

Ry, 40 f () tends to zero when n — oo this coincides with f and we have:

0 rp) T
flz) = Z %(m — ).
n=0

A power series does not converge usually on R, the set of points where
it converges is called convergence set; it is always a symmetric interval
centered at zo: (xg — R,z9 + R), including or not the end-points. The

number R € [0, 00] is called radius of convergence.

OO —1)tln
Example: 6.6. lOg(1+$):Z()T$:x—%+%+...’

1
—1 < 2 < 1. The radius in this case is R = 1.

3

—

THEOREM 6.4. (Taylor series)
[ee]

If the numeric series Z an(a —xp)"™ converges and 0 < r < |a — x|,

n=0
oo

then, the series f(x) = Z an(x—x0)" converges uniformly and abso-

n=0
lutely on the interval [xo —r, zo+r]. Besides, the same happens with

o0
the series Z ann(z — 20)" "' and f is differentiable with derivative:

n=1

o0
f(z) = Zann(w—xo)"_l, Va |z —xo| < |a — xo].
n=1
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This means that any convergent power series is a Taylor series. To obtain

the radius of convergence we have the following result:

THEOREM 6.5. (Cauchy-Hadamard formula)
If one of the following limits exists:

, lim {/|ay|,

n— oo

an41
an

lim
n— o0

(if both exist they are equal) and L is the value, then the radius of

1 .
convergence R of the power series Z an(r—mzp)" is R = T with the

n=0

convention 1/0 = oo, 1/00 = 0.

In fact, the limits that appear in this formula are the limits superior.
The limit superior exists always and is equal to the usual limit if the limit

exists. It is defined by (sup means supremum):

limsupa, = lim sup{a,,ani1,an42,--.}.
n—00 n—00

Example: 6.7. For a, = (—1)" we have: limsupa,, = 1.

n— oo
SOME TAYLOR SERIES
X n 2 3
s _ N2 _ ror o
e ¢ —Zn!—1+x+2!+3!+ , z €R.
n=0
o0
. B (_1)nl,2n+l - :L‘3 :135
OSIH.’E—ZW—J}—Q—FE_F...’ x € R.
n=0
(o)
_ (_1)nw2n_ .TQ .Z'4
°Cosx_ZW_l_§+E+”" x e R
n=0
1 o
. => 2" =1+azt+a’+2° 4., —l<z<l.
1—=x
n=0
[e.¢]
_1n+1n 2 3
olog(l—i—x):z( )n ° :x—%+—+ : “1<z<l.
n=1

Taylor series are the most important of the power series because:
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7

THEOREM 6.6. (Convergent power series)

If a power series centered at a point xo converges, then it is the

Taylor series of some function f(x) centered at x.

— ERC-

oS0




