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3 DERIVATIVES AND THEIR APPLICATIONS 19

3 Derivatives and their applications

3.1 Differentiability

f@) (@) + 9(x)g'(z)

Problem 3.1.1 i) h/(z) =
f2(z) + g*(x)

@) - F@)d (@)
0@ = e T )
iii) W(x) = [/(g(2))g' (@) + F(g(@)) [ () |/
) ey — L)) + o) (o) cos(F )
@)
o) (@) = (FP O @ log(1(2)) + 2L,
o) W) = =L@+ 2l )

Problem 3.1.2 a) For example, for 1 < || < 2 we can define f(x) =2 — |z|.
b) For example, for 1 < z < 2 we can take f(z) = 223 — 922 + 12z — 4, and its even symmetric
function in —2 < 2 < —1. Another easier function is f(z) = sin?(rz/2) in 1 < |z| < 2.

Problem 3.1.3 It is direct. For example

z_ . —x\/' x -
(sinh:c)’:<e 26 ) e’ +e

Problem 3.1.4 It is direct. For example
i) xf —f— f2—a2%= x(tgar—f—:c(l + tgzx)) —ztgr — (vtgx)? — 22 =0.

Problem 3.1.5 The derivatives of the three functions are zero in their domains, so they are
constant on each interval of the domain. For example:

1 ~1/z% 1 I
1422 1+ (1/2)2 1422 2241

(arctg x + arctg i)' 0.

i) At x =1 we have arctg 1 + arctgl = 7/2 (also we can compute the limit for z — 07, or for
T — 00).

1) At x = 0 we have arctg 1 + arctg 0 = 7/4.

iii) At z =1 we have 2arctg1 + arcsin1 = 7.

Observe, for example, that the first function is odd and has the value —g for x < 0, and it is

not continuous at x = 0.
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Problem 3.1.6

ax? =logx

: _ _ 1.0}
The system { 20z = 1)1 gives x = /e, a = 1/2e, /

. x 1 0.5}
and the tangent line is y = — — —.

Je 2

-0.5F

-1.0f

Problem 3.1.7

At the points where the sine function vanishes:

) x=km, keZ.
T 21

Problem 3.1.8

lim —— =0, lim ———— =1.

h—0+ 1 4 el/h h—0- 1+ el/h 101

The angle that the tangent lines form is then 03t

arctg 1 = /4. 3 = = : 5 5
<0.5f
-1.0}
-1.5F

Problem 3.1.9 a) It is continuous and differentiable in all R.

b) Yes, we can apply the mean value theorem in [0, 2]:

f(2) - f(0)

=12 =)

| —c if c <1,
T -1/ ife> 1.

We obtain the two values c=1/2 < 1 and ¢ = V2 > 1.
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Problem 3.1.10 It is continuous in {x +2 > 0}({—1 < z +2 < 1} = [-2,—1], ant it is
arccos(z +2) Va+2
2V + 2 1— (2 +2)

are null respectively at x = —2 and at x = —1.

differentiable in (—2, —1) since f'(z) = , and the denominators

Problem 3.1.11 f is differentiable in R if and only if the equation az? — z + 3 = 0 does not
have two different roots; using the discriminant we obtain the condition 1 — 12a. < 0, that is

> —
“=1

Problem 3.1.12 f is not differentiable at x = 0.

Problem 3.1.13 «a) i) f'(z) = kx|z|*2, ii) ¢’(x) = k|z|*~!, b) They are both continuous at
zero and, for k > 1, in f and g the side derivatives at the origin have limit zero, so they are both
differentiable at zero and f/(0) = 0. ¢) The function h is continuous at zero by the pinching

lemma. For the derivative at zero:
h(a) — h(0 alk
lim M‘ < tim 128 iy ot = 0,
a—0 a| a—0

lim M

a—0 [0 a—0 «

hence, h is differentiable at zero with h’'(0) = 0. d) By part ¢) applied to the points z = 0 and
x = 1 it is differentiable at those points. For z # 0,z # 1 the function is not continuous, so it
is not differentiable.

Problem 3.1.14 If ¢ < 0 the function is simply f(x) = |z|~!, that is not continuous at = = 0.

1 1
For ¢ > 0, since f is even, it is enough to study = = ¢, where we obtain a + bc? = =, 2bc = -
c c
3 1
which implies a = —, b = ——.
2c 2c3

Problem 3.1.15 Consider f(z) = /3. Applying the mean value theorem in [26,27] we have

27%/3 — 26%/% 2
W = 55!7_1/3, for some x € (26,27) - (8,27),

2 1
which implies 9 — 26%/3 € (§ : §) and finally ? < 2623 < %

1
If we define now g(x) = loga and apply the mean value theorem in [1,3/2] we obtain 3 <

log(3/2) < %
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Problem 3.1.16 a«)
i L2 fe ) (T 0002 S0, =T 4,

h—0 h h—0 bh —ah

b) Using the previous part:

21(0) — tim FOE 1)~ FO 1)

_ / _
lim ; =0 = f(0)=0.

¢) We can use L’Hopital:

}Lli% f(x+h)+f(hx2_h)_2f(x) :,%13}) o :ﬁf”(x):fﬂ(ﬂf)-

Problem 3.1.17 The limits of 2.1.2 are immediate using L’Hopital’s rule; for example

1/(221/2)
G L= i _
Z”) achGl4 1/(3;1:2/3)
In some limits of 2.1.3 it is necessary first to work a little bit to obtain a quotient. For example
in vi), viii), xi) and xii) write them in exponential form. If it is necessary to use L’Hépital’s
rule more than once, simplify as much as you can before differentiating again. For example

i) L= lim 1222 sin 223 cos 223 9 lim sin 223 9 lim 622 cos 23 4
=0 65 =0 a3 =0 32

Problem 3.1.18 i) Use L’Hopital twice, L =1/2. i) L=1.

log(z — 1 1/(z—1 log? 21
i) L= lim B0V, V@=1) ., lee ) 2ler_,
z—1t l/loga: z—1 —1/(5{; ]og [L‘) z—11—2x z—1 X
, . logx N -
iw) L = exp( lim )=1. v) define z + 1 =t to simplify the derivatives:
r—00 X
t 424 t _ t 2 41 _
ot ottt tflogt+ 1) —2t+1 . t(logt+1)% 4t 2
t=1 (t—1)3 t—1 3(t—1)2 t—1 6(t—1)

1
= 5 lim (tQ(logt +1)3 42t logt + 1)+t (logt + (t — 1)/t) =1/2.
—

vi) Define t =1/z, L = 1.

1 T
Problem 3.1.19 i) L = lim —( ° ) =0.4) L =0. i) L =1/2.

z—=oox \x — 1
222 + 32 —2 5 2rsinx
3 L = 1' T = 1. L = 1. _— = — =, ) L = 1' _——m 4.
w) exp(xlgb Tarcos) v) xirf}Q cosTx m vi) 250 1 — cos®
1—4x
vii) L = lim (V22 4+ 1 — V22 + 4z) = lim = —2. viii) L =e.



3.1 Differentiability 23

h(x) h(z)

Problem 3.1.20 Since lim —* = 1, we have h(0) = lim h(z) = lim ——= = 0. Then,
z—0 X , z—0 z—0 X
h h
R(0) = lim hiz) = 0. Finally, /”’(0) = lim (z) But using L’Hépital’s rule we obtain:
=0 X , z—0 X
h h
1= 1im M) gy PO oy = 0.
z—0 X z—0 X
Problem 3.1.21
ar _ ot _ 2, ar _ T 2_1
I = lim & e _ i ©© e’ _a ’
z—0 2x z—0 2 2

But, in order to make sense in the second application of L’Hopital it is necessary to have

lin}) (ae™ —e® — 1) = 0 (in other case the limit does not exist) which implies a = 2 and so
T—r

L=3/2.

Problem 3.1.22

. s (1+t>1/t_e L 1/t 1 10g(1+t> .
) L =lm t = fm{1+7) (t(t+1) 2 )_
— elim L= (1 +1)log(1 +1) :elimM __°
t—0 2 t—0 2t 2
1+ 1/x)* 1+ 1/x)*
i) L = lim [M]x — exp [lim x<M—1)] —
T—00 e T—00 e

S TR T TR

using the previous limit.

i) L = i (21/w+181/x 1) = o |1 218 =2
21 = exp xl_}I{.loit 5 = exp tgr(l) 2%

[logZ + log 18]
= exp - 6.

In fact, this is a particular case of the following limit, L = v/2 - 18 = 6.

P
1y Z1 @
. _ . - ! x _ — o 1=
w) L =exp xl;ngox(p Z;al 1)} exp 2lgr(l) T
1=

P

.1 . 1< L \1/p
= exp %%];Zaibgai :exp[l—)glogai}:(l_[lai) ,

=1

that is, the geometric mean of the a; terms.
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Problem 3.1.23 a) f(0) =0 so that the limit exists.

3
110 =t Tty £ 5
¢) lim (fof)2z) _ . (f(f(22)) f2x) 3z 2 125
=0 f~1(3x) =m0 f(2r) 2z f1(3x)3 127

Problem 3.1.24 The function f(z) = 21+ is continuous and differentiable in z > 0. For
every x > 0, applying the mean value theorem to the interval [z, z + 1] there is an a € (z,z+1)

such that:
(1 +.’E)1+1+% _ ‘,E:H*% — f(.’E + 1:3 B f(.’E) _ f’(a),

so, the limit we want is equal to

1 1
lim f'(a) = lim aa (— B 1 +_) — 1.
(0% «

a—00 a—00

Problem 3.1.25 a) f~!(z) = arcsinz, for € [~1,1], and we can differentiate directly, also
we can use the inverse function theorem to obtain:

(f_1>l<£) - : - : =2 = cos(f(z)) = % =  flx) = arccosg €

fI(f =) cos(f~H(x) 4

4 4N2 3
then z = sin (arccos 5) =4/1— (—) = b) callgl(z) =y

5
1 ! B 1 N 1 y + \V/ 1+ y / _ / _1 T
(7)) = g @) g 1+ e v )

this means that g_l(:v) = :I:\/g, and so x = g( :l:\/§ = log( :|:\/§ + 2).

Problem 3.1.26 Observe first that if f is continuous then so is f’, since f' = ef(2 + tgz).
Also the inverse ¢ is continuous. We have

fO)=1, g(0)=F11)=0, f(0)=lim f(x) =2/ = 2.

Besides, since f’(0) # 0, the following limit exists

1 1
1 =lim —— = —.
limy () = 250 f/(g(z))  2e
Now, we use L’Hopital:
r _ ,—sinzx T —sinzx
L:IimL:Iime rooswe = Je.
z—0 g(x) z—0 g'(x)
Also we can decompose the limit instead:
r _ ,—sinx r _ ,—sinx
L=1lim > —fim——° lim —— .
=0 g(x) z—0 x -0 g(x)
The first limit is 2; for the second:
-1
lim —7— — 1im LG 7L g0y = 2
z—0 g(a:) z—0 z

[0, 7],
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Problem 3.1.27 a) Apply Rolle’s theorem in the intervals determined by each pair of
consecutive roots of f, we obtain that f’ must have at least the amount of roots of f minus one.
b) Apply the previous result to the successive derivatives of f.

Problem 3.1.28 Using Bolzano’s and Rolle’s theorems we obtain that the equations ), i7), iv)

and v) have one root, while the equation iii) has two and the equation vi) has none. Once we

know how to plot a function the problem becomes much easier to solve.

i) f(x) = 27 + 4z — 3 verifies Igmoo f(z) = —o0, xlggo f(z) = oo, so it has at least one root;

in case of more than one root the derivative should be zero at some intermediate point, but

f(z) =T2* +4 #0 for all z € R.

ii) f(z) = 2% — 5z + 6 verifies lim f(z) = —co, lim f(z) = oo, f(—=1) > 0, f(1) > 0, and
T—r—00 T—r00

f'(z) = 5(z* — 1) = 0 & x = +1; so there is a root in (—oc, —1), none in [1,00), and also no

roots in [—1, 1] since this would imply f’(z) = 0 for some intermediate point.

iii)  f(x) = x* — 423 — 1 verifies xll)mxf(x) = Zlgrolof(m) = o0, f(0) < 0, f(3) < 0, and

f(z) = 42%(x —3) =0 < z = 0 or = 3; so there is a root in (—o0,0), another in (3,00) and

none in [0, 3].

x7+4x=3 x5=5x-6 xt-4x3=1

20

20 10

0.5 1.0 -2 =1 1 2
_10 -10

-20

-20

=30

) f(z) =sinz — 2z + 1 verifies f(0) > 0, f(7) < 0 and f/'(z) = cosz — 2 # 0 for all x € R; so
there is a unique root, and it is in (0, 7).

v) f(z) =a® —2 verifies f(1) <0, f(2) > 0 and f'(z) = 2% (logxz + 1) # 0 for all x > 1; so there
is a unique root, and it is in (1,2).

vi) f(z) = 2%+ logz verifies f(1) > 0, and f'(z) = 2z + 1/x > 0 for all z > 1; so there are no
roots.
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n
N

sinx=2x-1 x* 2 1
3.0 x* =log|—
x

25 3

2.0

-2

-4

-6
02 04 06 08 10 12 14

0.5 1.0 1.5

Problem 3.1.29 a) For a given ¢, we have |f(z) — f(a)| < klz —a|* <cif |z —a| < (%)1/(1,

this is the § we need. b) With the hint we obtain k = V2. Another solution: If > y > 0 then
Vv —/y < /x —y (compute the squares and arrive to y < ,/zy, that is true). By the same
reason, if y > x > 0 then \/y — /& < \/y —z, so

Wz =yl < Vl]z -y,

so f(x) = \/x belongs to Ay/5([0,1]) with constant & = 1. ¢) Use the mean value theorem for
any pair of points z,y € [a, b], there is a £ € (a,b) such that:

w: £ = |f@)—f)l=If©lz—yl

Since f’ is continuous in [a,b], then it is also bounded there, for example by K, hence: |f(z) —
fy)| = K|z —y|. d) For any x,y € [a,b] there is a k such that: |f(z) — f(y)| < k|z — y|, use
now the mean value theorem and obtain:

fly) = f(=)
y—

< k.

|f'(z)] = lim <

Yy—x

e) Directly, |f(z) — f(y)| = ‘|3:| — |y|‘ < |z —y|. f) We compute the derivative:

fly) — f(x)
Yy—x

Yy—x

y=r |y —x|®

|f'(z)] = lim

Yy—x

So, the function is constant.
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3.2 Extrema
Problem 3.2.1

i) f is continuous in R and differentiable in R\ {4}.
1) Local maximum at x = 3, local and absolute min-
ima

at x =0, x =4. 15
iii) f is increasing in [0, 1], with f(0) = —1, f(1) = 2.

Problem 3.2.2 Minimize the area of the surface, A(r,h) = 2772 + 27rh, with the restriction
Vv

of fixed volume V = mr?h. That is, minimize f(r) = 2r(r* + —) for r € (0,00). We obtain
r

r=(V/2r)/3, h=2r.

Problem 3.2.3

For a given point in the first quadrant P = (z,y),

maximize the area A(z,y) = 4xy with the restriction /
that the point belongs to the ellipse (z/a)? 4 (y/b)? = . /

4b
1. That is, maximize f(z) = R forx €
a

a
[0,a]. We obtain z = —, y = —=, and the area
V2 V2

A = 2ab. | \/

Problem 3.2.4 Given a point in the first quadrant P = (z9, o) on the parabola y = 6—22, the
tangent line to the curve through P is y = 6+ 22 —22¢z. The area of the triangle determined by

1

this line and the coordinate axes is A(zg) = 4—(51:%—}—6)2. Minimize this function for zy € (0, /6]
Zo

and we obtain zg = \/5, with area A = 8v/2.

Problem 3.2.5

Given a point in the first quadrant P = (x,y) on the s \
circumference (r — 1)2 + y2 = 1, the area we want to /

1 1
minimize is A(z,y) = STy = eV 2z — 22, for z € [0,2].

We obtain z = 3/2. \ /
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rot+a yo+f
o g
a) Minimizing the length f(a) = \/(3:0 +a)? + (yo + M)2, for a > 0, gives us a = (zoyd) /3.
«

Problem 3.2.6 By symmetry of triangles we have that

b) Minimizing the sum of lengths g(a) = xo + a + yo + M, for o > 0, gives us a = (zoyo) /2.
a

1
¢) Minimizing the area h(a) = 5(:1:0 + o) (yo + M) for o > 0 gives us a = .
«

Problem 3.2.7 a) Consider a fixed ¢ > 1 and define the function, for z > —1, f(z) =
(14 2z)*—1—az. The point z = 0 is an absolute minimum of f in [—1,00), so f(z) > f(0) =0
for all x > —1.

Now consider a fixed 0 < @ < 1 and the function, for x > —1, f(z) = (1 +2)* — 1 — az. The
point = 0 is a global maximum of f in [—1,00), so f(z) < f(0) =0 for all x > —1.

b) Define g(z) = e* — 1 — x. The point z = 0 is a global minimum of g, so g(z) > ¢(0) = 0 for
all z € R.

¢) Consider h(zx) = log(l + z) — % The point = 0 is a global minimum of h, so
x

h(z) > h(0) = 0 for all z > —1. For the second inequality use part b) and obtain directly
e” > x + 1, which implies > log(z + 1).

|
Problem 3.2.8 a) Define f(z) = %% Sincer =eisa global maximum we have f(z) <
x

1

fley=—,forall x > 0, z # ¢
e

log x

1
b) We have < —forall z >0,z #e,so (elogx) <z, that is, x° < e”.
e

Problem 3.2.9

a) Consider f(z) = 2z%3 + 52%/3, then: 5
@) = 2w+ a1 4
Thus f'(0) does not exist, while f'(—1) = 0. Com-
paring the values f(0) = 0, f(—1) = 3, f(—2) = 2%/3,
f(1) = 7, we find a maximum at z = 1, and a mini- 2
mum at z = 0.

-2.0 -1.5 -1.0 -0.5 0.5 1.0
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b) f is continuous on [—m, 7], so there exist the absolute maximum and the absolute minimum.
17(0) does not exist. Comparing the values f(0) =1, f(r) = f(—7) = —1+7 [ =r(=%)=
%, the absolute maxima are at z = —7 and x = 7 and the absolute minimum is at x = 0.
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