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5 SEQUENCES AND SERIES OF REAL NUMBERS 41

5 Sequences and series of real numbers

5.1 Sequences of numbers

Problem 5.1.1 a) The product sequence can be anything; for example with z,, = 1/n, y, = n,
Tpyn = 1 converges; if x, = 1/n and y,, = n?, 2,5, = n diverges. The sum sequence is divergent
because in other case the difference (z,, + yn) — x,, would be convergent. The quotient sequence
is divergent because in other case the product (y,/z,) - ©, would be convergent.

b) ||zn|—¢|| < |xn—2], by the problem 1.1.1 ¢). The reciprocal is false, for example z,, = (—1)".
c) Take ¢ = 1/2, the only way to obtain |z, — ¢| < 1/2 with z,, € Z is that x,, = ¢ € Z from
some n onwards.

d) If |xp, — ¢| < e for n > N, then

|xn| < max{|€+€|, |€_E|7 ’$1|, ’$2|,...,|$N|}.

Problem 5.1.2 a) ani1 = C(an+an_—1)+D(by+by1) = an+apir. b) rth=prtgprn—l —

T‘—T—1=0:>T’1= 5 , T9 =
c) We use the two previous parts and look for a sequence of the form: a,, = Cr} + Drj, with
the values ag = 0 and o1 = 1. We obtain:

an:% <<1+2¢5>"_ (1_;5)71).

Problem 5.1.3 We try sequences of the form u, = ™ and obtain 2r" —r —1=0,s0 1] =2
and ro = —1, hence u, = C2"™ + D(—1)". Now, ug = a and u; = b imply that C = “TH’ and
D = 2a=b The sequence is then

. The value of r; is known as the golden ratio.

3
- if a+b<0
b, 2a—b o~ X ’
Up = a; 2" + a3 (-)" = 1i_>m u, = ¢ does not exist if a+b=0,
e 0, if a+b6>0.
Problem 5.1.4 i)a,=1-2""; i_}rn an = 1.
1) by, = 2% with a,, from the previous part; li_>m b, = 2.
Problem 5.1.5 i) Compute for n < m:
. o 2n+3 2m+3 _ (2n+3)3m+5) - (2m+3)(3n+5) n—m
™ 3n 45 3m4+5 (3n +5)(3m + 5) ~ 9nm + 150 + 15m + 25

and this tends to zero as n,m — oo, so it is a Cauchy sequence. ii) We consider now the specific
case of n = 2F and m = 2¥t! for k € N:

j:2k’+1

DD I R IS U L
—~ g2k T 2k41 2k 42 2k+1 2k+1 2
J:

and this does not tend to zero as n = 2¥ grows to infinity, so this is not a Cauchy sequence.
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1 —-31

Problem 5.1.6 i) L = exp( lim oga) =1; ii) L = exp( lim M) =1;

n—oo N n—oo n
iti) Iffa>b, L= ILm ai/1+ (b/a)™ = a, so L = max{a, b};

n—,oo
) . At b\ . . :
w) L = hn(l) ( ) = Vab by the problem 3.1.22 iv); v) multiplying by the conjugate
T—

L = 1/2; wi) multiplying twice by the conjugate L = 0; wii) divide by 3", L = 3;

. (n?=1)(Bn+1)
viii) L = exp[nlbngo 2n(n? —3) ] = e3/2;

) 1/n—sinl/n
Problem 5.1.7 i) L= lim 0=0; i) L= lim esn1/» " _ 1.
n—00 n—o0 1/n—sinl/n
ii1) use Stolz L = nh—{%o m =1; iv) use Stirling L = nh—>Héo W =e; (it
can be solved also using Stolz, but it is longer); v) by comparison 0 < L < li_>m — =0 (or use
n—oo N
2 1
Stirling); vi) use Stolz twice L = lim — =0; vii) L = lim —( n )n = 0; widi) use Stolz
n—oo 2N n—oon \n — 1
) nl—i—l/n
L= e =2
b inbr — 1
Problem 5.1.8 i) L = exp(lim cosbr + asinbr ) = e,
z—0 X
—b -1
i1) L = exp(lim (a = bw)/(a +2) ) =e (0FD/a,
z—0 X
i e log(2k — 1
Problem 5.1.9 i) L = lim _sin(r/n) _ = 7. i) L = exp(lim 2= 108 )) =
n—oo log(n/(n — 1)) n—o0 n?
. log@n—-1) . nfsin(l/n) 1
R L g Ak
: an /1
Problem 5.1.10 L= lim —————— =e.
n—oo log((n + 1)n)
—n—L L
Problem 5.1.11 a) lim "~ % _ 0= fim @ — jim 25 1,
n— 00 n n—oo n n—oo N
b) lim nlog (a_n) = lim n(a—n - 1) = L.
n—o0 n n—oo n

1 |
Problem 5.1.12 L = exp( lim 228 9%n 2= log ai

5 ) = €% and now we obtain a using
n—o00 n
Stolz,

nloga, — (n— 1)loga,—1 — logay,

a= lim — lim (n — 1)10g(an/an—1) _ logg
e n?—(n—1)? n—+00 2n — 1 2

So L = /4.
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Problem 5.1.13 i) ap4+1 = f(ay), where f(x) = v/2z. It is monotonous since f is increasing;

it is increasing monotonous since as = V/2v/2 > v/2 = a;. It is bounded from above, a,, < 2, this
is proved by induction: a; < 2 and a, < 2 = an41 < V4 = 2. Then, there exists £ = lim a,,

n—oo
that verifies £ = v/2¢, which implies ¢ = 2, since £ > a; = v/2 > 0. In fact, by problem 5.1.4 i),
the sequence is explicit, a, = 21727" — 2.
ii) Now f(z) = /2 x, that is also increasing, besides az = V2 +v2 > V2 = ay, so the
sequence is increasing monotonous; on the other hand, we have a,, < 2, so there exists ¢ =
lim a,, that satisfies £ = v/2 + ¢, this means ¢ = 2, because ¢ > v/2 > —1.

n—oo

iii) f(xr) = 3+ x/2 is increasing, u; = 3 > 0 = up and u, < 6: then there exists ¢ = le Un,
n—oo

14
that satisfies £ = 3 + 3 this implies ¢ = 6. This sequence is also explicit (it is a geometric
progression) u, = 6(1 —27") — 6.
i) f(z) =3+ 2z is increasing, u; = 3 > 0 = up, but the sequence is a non-bounded monotonic

one, so lim u, = co. Again it is explicit: u, = 3(2" — 1) — oo.
n—oo

v) f(z) = - is increasing, so the sequence is monotonous. It is increasing or decreasing

. . 49 . . .
monotonic according with the first two terms. a) ug = 1/2, u; = — > g, increasing, since

56
3
et 6, this means ¢ = 1, 2 or —3; finally

U, < 1 the limit exists ¢ = le Uy, that verifies ¢ =
n oo
¢=1since 1/2 < ¢ < 1.

75
b) ug = 3/2, u; = 56 < ug, decreasing; since u, > 1 the limit exists £ = le uy, = 1, since
n o0
1<0<3/2.

33 . . :
¢) up = 3, up = — > 3, increasing and non-bounded sequence, so lim u, = co.
n—oo

7

3
Problem 5.1.14 a) an41 = f(an) with f(z) =V/1+3xz—1, f(x) = Wites > 0. We have
an < 1 and ap41 > an. Then there exists £ = lim ay, that verifies { =1+ 3¢ — 1, thus £ =1,

n—oo
since 1/2 < £ < 1.

. V1+3a, —2 . V1+3xz—-2 3
b) lim ——— = lim —— = —.
n—00 anp — 1 z—1 rz—1 4

This limit can also be obtained multiplying by the conjugate:

. 3an, — 3
lim = =

3 3
= 1 - .
w00 (an — 1)(vI T Ban +2)  nooo VIt 3ay +2 4

1
Problem 5.1.15 a) by41 — by = —=(by, — by—1) (in fact f(z) = 1 — /2 is decreasing).

2
14 2
b == _ = = -
) =1 2:>£ 3
2 1 b, 1 2

bt — 2| = |5 — =] = =|bn— .
) b1 = 21 =15 = 2 = 5l — =
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2 1 2 1 2 1 2

d) |bn—§|—§|bn—1—§|—Z|bn—2—§|—"'—2—n( 0—5)—>0-

. . 2 —1\" 2
This is also an explicit sequence, b, = 3 [1 — (7) ] — 3"

1 —1 )

Problem 5.1.16 a) ¢ = 77 = (= +\/_, since directly ¢ > 0. b) z € [1/2,1] =

1 1 4 1
112 € [1/2,2/3] € [1/2,1]. o) |f'(z)] = (e < g < lifz > 3 d) Use induction

starting with ¢; = 1 and the previous part. e)
1 l‘ B ‘l(l —cp)

<lep =1l < <1"er = 1.

_ll =

Problem 5.1.17
4
a) e (=2+-=/(=1++/5 (since?>0);

12
10 4 16 10 10
el3,=]|=24+4—-—¢€|—,—]|C 3, —=;
¢ e lm2+o el B
34 10 10
dy=— €13, — d 3,—] Vn>4;
o dy 116[,3]:> ne[,3] n > 4;
4 4 .
. 244/d,—¢ . 244)x—¢ 4
b lm ——— =lim ——— = ——.
) e oot -1 02
. t(1+1) . . . . .
Problem 5.1.18 =z, = f(zn—1) with f(t) = Tro that is an increasing function. Since
2
ro = = < 1 = xp it is a decreasing monotonous sequence. Besides x,, > 0, so there exists
lim x, = 0.

n—oo

Problem 5.1.19 For example:

5.1.13 @) upt1 = V2up, up=1.
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3
5.1.13: v) un+1=“"7+6, a)zo=1/2, b)ug=3/2, ¢)up=3.
1 T
5115: by =1— 22 by =0 1
cLolos Op41 = _57 0 — Y. 5.1.16: Cn+1=1+cn, co = 0.

Problem 5.1.20 a) Observe that y, > 0 Vn € N. Consider now K > 0 an upper bound for
{zp}, then
(nK)*

0 S Yn S — I{Ozn()l—l7

that tends to zero as n — oo since —1 < o — 1 < 0. Using the pinching lemma we obtain that
li_}m yn = 0. b) For o = 1 we use Stolz:
n oo

lim y, = lim It
n—00 nsoon-+1—n
An example of what they ask is z,, = (—1)", that is not convergent. The corresponding sequence

Yn is —1/n for n odd and zero for n even, so lim y, = 0.
n—oo

Problem 5.1.21 a) By definition, y, > yn+1, so it is decreasing, and it is bounded because
{z,} is bounded, so {y,} is convergent b) ) 1. ii) 3.
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5.2 Series of numbers

Problem 5.2.1 Notation: C = convergent and D = divergent.
N 1
1) nh—>Holo’/a"_§<1:>C‘

.. . an 1 an 1 . (079
i7) nh—>nc}om =5~ C. i) nh_?éo Un? = 7 = C. w) HILH;O% =1=D.
1 an,
< — . UL = = .
U)an_n2:>0 UZ)nlggo 1 1:>CU”>,}LH010 /\/_ =1=D
n 1 . . n .
viid) lim aa:1 = 5<1=0 i) lim aa:1 - § <1=C. o) Jim Yam=0<1=C.
i) lm {/an = g <1=C.zii) lim a, = e /2 £ 0= D. ziii) lim /@, =0<1=C.
. . an 1 . . an
xiv) nl;ngo Va, =0<1=C.zv) Jgngo% =5 D. zvi) nl;n;oﬁ =1=D.
Tvii) ap < —5 sin > e? = C. zviii) (logn)os™ = ploslosn) > p2 g p > ¢ = C.
n
2(a—b b n
Problem 5.2.2 aq, = (a—bn+a+t . Then lim —"_ = 2 if g = b and the series converges,
4n? —1 n—oo 1/n? 2
n - b . . .
while nl;n;o 1a/_n = aT if a # b and the series diverges.
1+a
Problem 5.2.3 a) h_>m Yo, = —— < 1foralla > -1, a # 0 = C; if a = 0 the series is
n—oo ed
o0
Zn = o0o0. b) Use the Stirling formula, ILm va, = E, soa>e=C,a<e= D;ifa=c¢e,
n—00 a
n=1
1 V2
then a, ~ = D. ¢) Use again, a, =~ m ,80 C < a>3/2.
V2mn ne

Problem 5.2.4 Notation: AC = absolutely convergent, C'C' = conditionally convergent.
n . —-1)" 1
1) hm lan| =0, but lim [an| =00 = CC; ii) ap = (=1 +O<—) = CC;
n n

n—oo 1/n
1 -1)" 1
i) |an| = —I—o( ):>AC', ) lim |ay| = 7T— = D; v) ap, = u—i—o(—) = CC;
n—00 4 2n n
—1)n ! 1 1 1
Vi) ap = —( ) +0( >:>CC vid) |an| = — (—2) = AC;
n 2n
-1 1
viii) an = 2" +0< >:>CC
n
23
Problem 5.2.5 arctgz =x — 5 + o(z3) for z — 0, so we have for n — oo
1 1
lan| = 37373 +o( 3/2) = AC.
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. 1 1 . "0 dx 1 1 .
Problem 5.2.6 i) |£|§m<1—031fN>6,u) |E|S./N F—W<1—031fN>7.

o0 [e.¢]
3\ 1 1\n 1 1 1 47
Problem 5.2.7 ) S =3 (5) ~ 5> (5) =3 _1. _ 4
roblem 5.2.7 i) S =3 1 53 5 3 Y7y
n=0 n=>0
1/2

(1-1/2)?
N 1/3 19
W S=4 G gE i Y

i) S = =2

o0

. 1 1 . 1

> 1 2
v) S = Z{lgL—l n:; }:—log2+nli_>1fglologzJr =

“log 2.
1 8

n=1

Problem 5.2.8 i) For n = 2k, k € N: al?/2pl+1)/2 = gkpk = (ab)*. If now n = 2k + 1,
ke N: a"/Apl(n+D/2] — gkpk+1 — p(ab)*. Hence we have two geometric series, the original series
converges absolutely, so we can reorder to sum:

b
Z I/ Apln41)/2] _ Z(ab +bZ( b)* 11_+ ab’

n=0 k=0
i) Forn = Sk: ke N: COSQ’TT" =cos(2rk) =1. If n =3k +1, k € N: cos 2’5" = cos(27rk:+ 27T) =
cos 237r =—3 L Finally, if n = 3k + 2, k € N: cos 27?;” = cos(2mk + 4”) = cos 437r = —3. Since our
series converges absolutely we can change the order in the sum:
[e.¢] [e.e] o0 o0
1 2mn 1 1 1 1 1
on €08 3 Z 93k 9 Z 23k+1 ~ 9 Z 93k+2
n=1 k=1 k=0 k=0
I 1\ 1 5 1 2
4 8 23k 1-1/8 7
k=0
Problem 5.2.9 a) We compute the limit:
log(1 1 -1
n—o0 an n—oo n—0o0 079

Therefore, both series have the same character. b) For every n € N we have that /anb, < an+bp,

SO:
> Vanbn <3 an+ > b,
n n n

since both series are convergent, the new series is convergent. c¢) As in the previous part:
E Vapani < 2 E an- SO it is convergent. For the second series: the general terms a, and

n n
1/ n? give convergent series, so our series converges.
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< 1/10
Problem 5.2.10 a) b035§b0+;9'10 <bo+9- 1-1/10

decimal development of a real number with integer part by (or by + 1 in some particular cases,
as in the following example).

= by + 1. It represents the

b) i) 9.999999--- =9 107" = 10;
S > 40
i) 1.212121---=» 107 42)" 10~ (k41 — 5

k=0 k=0

Problem 5.2.11 a) Consider f(r) =tgz —x. We have f'(x) = tg2z > 0, and also

I — —, I — o0,
n%[(infnll)ﬁ/Q]+ f(lU) o n%[(2n14?11)7r/2]_ f(iE) >

for every n € N; so there is one and only one root in that interval.

: O 1/A7 :
b) Since A\, € ((2n — 1)7/2, (2n + 1)7/2), then nl;n;o Tn? = n2 and the series converges.

Problem 5.2.12 a) It is a decreasing monotonous sequence of positive terms, so it converges;
the limit verifies £ = v/1 + 2¢ — 1, that is £ = 0.

. . Tp+1 . \/1+2t—1_
b) i) lim = lim =

n—oo Iy t—0 t

1.

B . . TnTntl . t(WV1I+2t-1)
i7) use Stolz,  lim = lim = lim =
n—oo /@y  n—=oo Xy — Tpp1 =0t —/14+2t41

2 1

¢) 1) diverges and ii) converges, since by the previous part z,, = — + 0(—). (Observe that
n n

the quotient (ratio) criterion does not work here).

~ ERC-
~ AsP-
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