Universidad Carlos III de Madrid Departamento de Matemáticas

DIFFERENTIAL CALCULUS. Problems

Degree in Applied Mathematics and Computation Chapter 5

> Elena Romera with the collaboration of Arturo de Pablo

Open Course Ware, UC3M

26

5 Sequences and series of real numbers

5.1 Sequences of numbers

Problem 5.1.1

- a) Let $\{x_n\}$ be a convergent sequence and $\{y_n\}$ a divergent one, what can we say about the product sequence $\{x_ny_n\}$, sum sequence $\{x_n+y_n\}$ and quotient sequence $\{y_n/x_n\}$ (supposing that $x_n \neq 0$ for all $n \in \mathbb{N}$)?
- b) Prove that if $\{x_n\}$ is convergent, then the sequence $\{|x_n|\}$ is also convergent. Is the reciprocal true?
- c) What can we say about a sequence of integer numbers that is convergent?
- d) Show that every convergent sequence is bounded.

Problem 5.1.2 Consider a sequence α_n that verifies the recurrence relation

$$\alpha_{n+1} = \alpha_n + \alpha_{n-1}, \qquad n \ge 1.$$

- a) Prove that if both a_n and b_n verify this relation, then $\alpha_n = Ca_n + Db_n$ also satisfies the relation for all $C, D \in \mathbb{R}$.
- b) Look for solutions in the form $\alpha_n = r^n$, $r \in \mathbb{R}$.
- c) Find a sequence with the following two first terms: $\alpha_0 = 0$, $\alpha_1 = 1$. (This is the famous Fibonacci sequence).

Problem 5.1.3 Obtain the limit (if it exists) of the sequence defined by the following recurrence relation:

$$u_n = \frac{u_{n-1} + u_{n-2}}{2}, \qquad u_0 = a, \quad u_1 = b.$$

(*Hint:* use the technique of the previous problem.)

Problem 5.1.4 Find the general term of the following sequences defined by recurrence and obtain the limit if it exists.

i)
$$a_0 = 0$$
, $a_{n+1} = \frac{a_n + 1}{2}$; ii) $b_0 = 1$, $b_{n+1} = \sqrt{2b_n}$.

Problem 5.1.5 Consider the two sequences:

i)
$$a_n = \frac{2n+3}{3n+5}$$
, ii) $b_n = \sum_{j=1}^n \frac{1}{j}$,

prove that the first one is a Cauchy sequence and the second is not, using the definition.

Sequences of numbers

27

Problem 5.1.6 Compute the following limits:

$$i) \quad \lim_{n \to \infty} \sqrt[n]{a}, \quad (a > 0),$$

$$ii)$$
 $\lim_{n\to\infty} n^{-3/n}$,

$$iii) \quad \lim_{n \to \infty} \sqrt[n]{a^n + b^n}, \quad (a, b > 0),$$

$$iii) \quad \lim_{n \to \infty} \sqrt[n]{a^n + b^n}, \quad (a, b > 0), \qquad iv) \quad \lim_{n \to \infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2}\right)^n, \quad (a, b > 0),$$

$$v$$
) $\lim_{n\to\infty} n\Big(\sqrt{n^2+1}-n\Big),$ vi) $\lim_{n\to\infty} (\sqrt[4]{n^2+1}-\sqrt{n+1}),$

$$vi) \quad \lim_{n \to \infty} (\sqrt[4]{n^2 + 1} - \sqrt{n+1})$$

$$vii) \quad \lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n},$$

$$viii) \quad \lim_{n \to \infty} \left(\frac{n^2 + 1}{n^2 - 3n} \right)^{\frac{n^2 - 1}{2n}}.$$

Problem 5.1.7 Calculate the following limits:

$$i$$
) $\lim_{n\to\infty}\frac{n}{\pi}\sin n\pi$,

$$ii) \quad \lim_{n \to \infty} \frac{n(e^{1/n} - e^{\sin 1/n})}{1 - n\sin 1/n},$$

$$iii)$$
 $\lim_{n\to\infty} \frac{1+\frac{1}{2}+\cdots+\frac{1}{n}}{\log n},$ $iv)$ $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}},$

$$iv$$
) $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}}$

$$v) \quad \lim_{n \to \infty} \frac{2^n}{n!},$$

$$vi) \quad \lim_{n \to \infty} \frac{n^2}{2^n},$$

$$vii) \quad \lim_{n \to \infty} \frac{n^{n-1}}{(n-1)^n},$$

$$viii) \quad \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \dots + n\sqrt[n]{n}}{n^2}.$$

Problem 5.1.8 Obtain the following limits:

i)
$$\lim_{n \to \infty} \left(\cos \frac{b}{n} + a \sin \frac{b}{n}\right)^n$$

i)
$$\lim_{n \to \infty} \left(\cos \frac{b}{n} + a \sin \frac{b}{n} \right)^n$$
; ii) $\lim_{n \to \infty} \sqrt[u_n]{\frac{a - bu_n}{a + u_n}}$, if $\lim_{n \to \infty} u_n = 0$, $a > 0$.

Problem 5.1.9 Find the limits:

$$i) \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \sin \frac{\pi}{k}}{\log n}, \qquad ii) \lim_{n \to \infty} \prod_{k=1}^{n} (2k-1)^{1/n^2}, \qquad iii) \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^2}{n^2} \sin \frac{1}{k}.$$

ii)
$$\lim_{n \to \infty} \prod_{k=1}^{n} (2k-1)^{1/n^2}$$
,

$$iii) \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^2}{n^2} \sin \frac{1}{k}.$$

Problem 5.1.10 If $\lim_{n\to\infty} a_n = \ell$, find

$$\lim_{n\to\infty} \frac{a_1 + \frac{a_2}{2} + \dots + \frac{a_n}{n}}{\log(n+1)}.$$

Problem 5.1.11 Let $\{a_n\}$ be sequence of positive terms that satisfies $\lim_{n\to\infty}(a_n-n)=L$.

- a) Show that $\lim_{n\to\infty} \frac{a_n}{n} = 1$.
- b) Show that $\lim_{n\to\infty} n \log(a_n/n) = L$.

5.1 Sequences of numbers

28

Problem 5.1.12 Consider a sequence of positive numbers, $\{a_n\}$, that verifies $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \ell$. Compute, using the Stolz criterion, the limit:

$$\lim_{n\to\infty} \sqrt[n^2]{\frac{a_n^n}{a_1 \cdot a_2 \cdots a_n}} \, .$$

Problem 5.1.13 Prove that the following sequences are monotonic, analyze if they are bounded and compute the limits if they exist.

$$i)$$
 $\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$ $ii)$ $\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2}+\sqrt{2}}, \dots$

$$iii)$$
 $u_{n+1} = 3 + \frac{u_n}{2}$, $u_0 = 0$. $iv)$ $u_{n+1} = 3 + 2u_n$, $u_0 = 0$.

v)
$$u_{n+1} = \frac{u_n^3 + 6}{7}$$
, a) $u_0 = 1/2$, b) $u_0 = 3/2$, c) $u_0 = 3$.

Problem 5.1.14 Consider the sequence defined by $a_{n+1} = \sqrt{1+3a_n} - 1$, $a_0 = 1/2$.

- a) Prove that it is convergent and compute its limit.
- b) Compute $\lim_{n\to\infty} \frac{a_{n+1}-1}{a_n-1}$.

Problem 5.1.15 We define a sequence by $b_{n+1} = 1 - \frac{b_n}{2}$, with $b_0 = 0$.

- a) Check that it is an oscillating sequence, that is: $sign(b_{n+1} b_n) = -sign(b_n b_{n-1})$.
- b) Calculate the possible limit ℓ .
- c) Show that $|b_{n+1} \ell| = \frac{1}{2}|b_n \ell|$.
- d) Show that indeed $\lim_{n\to\infty} b_n = \ell$.

Hint: c)
$$|b_n - \ell| = (\frac{1}{2})^n \ell$$
.

Problem 5.1.16 Consider a sequence defined by $c_{n+1} = f(c_n)$, where $f(x) = \frac{1}{1+x}$, $c_0 = 0$. Prove that it is convergent with the following steps:

- a) Calculate the possible limit ℓ .
- b) Show that if $x \in [1/2, 1]$ then $f(x) \in [1/2, 1]$.
- c) Check that $|f'(x)| \le k < 1$ for every $x \in [1/2, 1]$.
- d) Prove that $c_n \in [1/2, 1]$ for every $n \ge 1$.
- e) Prove the estimate $|c_{n+1} \ell| \le k^n |c_1 \ell|$ for every $n \ge 1$.

29

Problem 5.1.17

a) Use the technique of the previous problem with the sequence

$$d_0 = \frac{1}{2}, \quad d_{n+1} = 2 + \frac{4}{d_n}, \ n \ge 0,$$

and the interval [3, 10/3].

b) Compute $\lim_{n\to\infty} \frac{d_{n+1}-\ell}{d_n-\ell}$.

Problem 5.1.18 We consider a sequence of real numbers defined recursively by

$$x_1 = 1,$$
 $x_n = \frac{x_{n-1}(1 + x_{n-1})}{1 + 2x_{n-1}}.$

Prove that it is convergent and obtain its limit.

Problem 5.1.19 Describe the behaviour of the sequences defined recursively in the previous problems using a representation of each pair of consecutive terms in a cartesian system (*cobweb diagram*).

Problem 5.1.20 Let $\{x_n\}$ be a bounded sequence (not necessarily convergent) of positive terms. For $\alpha > 0$ we define the sequence

$$y_n = \frac{(x_1 + x_2 + \dots + x_n)^{\alpha}}{n}.$$

- a) If $0 < \alpha < 1$, show that $\lim_{n \to \infty} y_n = 0$.
- b) Consider now $\alpha = 1$. If $\lim_{n \to \infty} x_n = \ell$, show that $\lim_{n \to \infty} y_n = \ell$. Give an example of a non-convergent sequence $\{x_n\}$ such that the sequence $\{y_n\}$ is convergent.

Problem 5.1.21 Given a bounded sequence $\{x_n\}$ (not necessarily convergent) we consider a new sequence defined by

$$y_n = \sup\{x_n, x_{n+1}, \dots\}.$$

- a) Prove that $\{y_n\}$ is a bounded monotonic sequence and so it is convergent.
- b) Compute $\lim_{n\to\infty} y_n$ (known as *limit superior* of x_n) for the sequences:

i)
$$x_n = \frac{1 + (-1)^n}{2}$$
, ii) $x_n = (-1)^n \left(3 + \frac{1}{n}\right)$.

5.2 Series of numbers 30

5.2 Series of numbers

Problem 5.2.1

Study the convergence of the following series of positive terms:

$$i) \quad \sum_{n=1}^{\infty} \left(\frac{n+1}{2n-1}\right)^n, \qquad ii) \quad \sum_{n=1}^{\infty} \frac{1}{(3n-1)^2}, \qquad iii) \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{2n^4+1}},$$

$$iv) \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}, \qquad \qquad v) \quad \sum_{n=1}^{\infty} \frac{|\sin n|}{n^2+n}, \qquad \qquad vi) \quad \sum_{n=1}^{\infty} \sin(\frac{1}{n^2}),$$

$$vii) \quad \sum_{n=1}^{\infty}\arcsin(\frac{1}{\sqrt{n}}), \qquad \quad viii) \quad \sum_{n=1}^{\infty}\frac{3n-1}{(\sqrt{2})^n}, \qquad \qquad ix) \quad \sum_{n=1}^{\infty}\frac{n^n}{3^n n!},$$

$$x) \quad \sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)^n, \qquad xi) \quad \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} 3^{-n}, \qquad xii) \quad \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} e^{-n},$$

$$xiii)$$
 $\sum_{n=2}^{\infty} \frac{1}{(\log n)^n},$ $xiv)$ $\sum_{n=2}^{\infty} \frac{n^2}{(\log n)^n},$ $xv)$ $\sum_{n=2}^{\infty} [\sqrt{n^2 + 1} - n],$

$$xvi) \quad \sum_{n=2}^{\infty} \log(\frac{n+1}{n}), \qquad xvii) \quad \sum_{n=1}^{\infty} \frac{1}{n^{\log n}}, \qquad xviii) \quad \sum_{n=2}^{\infty} \frac{1}{(\log n)^{\log n}}.$$

Hints: (in general, we can apply more than one test to decide); i), viii), x), xii), xiv), root test; ix), ratio (quotient) test; ii), iii), iv), v), vi), vi), vi), vv), vvi), vvii), vv

Problem 5.2.2 Prove that the series

$$\sum_{n=1}^{\infty} \left(\frac{a}{2n-1} - \frac{b}{2n+1} \right)$$

is convergent if and only if a = b.

Problem 5.2.3

- a) Study the convergence of the series $\sum_{n=1}^{\infty} n(1+a)^n e^{-an}$, for different values of a > -1.
- b) Do the same with the series $\sum_{n=1}^{\infty} \frac{n^n}{a^n n!}$, for different values of a > 0.
- c) Again the same question for the series $\sum_{n=1}^{\infty} \frac{n! e^n}{n^{n+a}}$, for different values of $a \in \mathbb{R}$.

Hints: in b) and c) use the Stirling formula.

5.2 Series of numbers 31

Problem 5.2.4 Analyze the absolute and conditional convergence of the following alternating series:

$$i) \quad \sum_{n=2}^{\infty} \frac{(-1)^n}{\log n}, \qquad \qquad ii) \quad \sum_{n=2}^{\infty} \sin(\pi n + 1/n),$$

iii)
$$\sum_{n=1}^{\infty} (-1)^n (\arctan 1/n)^2$$
, *iv*) $\sum_{n=1}^{\infty} (-1)^n (\arctan n)^2$,

v)
$$\sum_{n=1}^{\infty} (-1)^n [\sqrt{n^2 - 1} - n],$$
 vi) $\sum_{n=1}^{\infty} (-1)^n \log(\frac{n}{n+1}),$

$$vii)$$
 $\sum_{n=1}^{\infty} (-1)^n (1 - \cos(1/n)),$ $viii)$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{\log(e^n + e^{-n})}.$

Problem 5.2.5 Use the Taylor expansion of the function $\operatorname{arctg} x$ to study the convergence of the series

$$\sum_{n=1}^{\infty} \left(\arctan \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n}} \right).$$

Problem 5.2.6 Find how many terms are necessary to approximate the following sums with an error smaller than 10^{-3} :

i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$$
, ii) $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

Problem 5.2.7 Compute the sum of the following series:

$$i) \quad \sum_{n=0}^{\infty} \frac{3^{n+1}-2^{n-3}}{4^n}, \qquad ii) \quad \sum_{n=1}^{\infty} \frac{n}{2^n}, \qquad iii) \quad \sum_{n=0}^{\infty} \frac{4n+1}{3^n},$$

$$iv)$$

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n(n+1)}}, \qquad v) \quad \sum_{n=1}^{\infty} \log \left[\frac{n(n+2)}{(n+1)^2} \right].$$

Problem 5.2.8 Obtain the sum of the following series:

$$i) \sum_{n=0}^{\infty} a^{[n/2]} b^{[(n+1)/2]}, \quad (|ab| < 1), \qquad ii) \sum_{n=1}^{\infty} \frac{1}{2^n} \cos \frac{2n\pi}{3}.$$

(*Hint*: decompose the sums in two and three parts respectively)

Problem 5.2.9

- a) If $a_n > -1$ for all n and $\lim_{n \to \infty} a_n = 0$, study the convergence of the series $\sum_n \log(1 + a_n)$ in terms of the convergence of the series $\sum_n a_n$.
- b) If both series of positive terms $\sum_{n} a_n$ and $\sum_{n} b_n$ are convergent, prove that it is also convergent the series $\sum_{n} \sqrt{a_n b_n}$.

5.2 Series of numbers 32

c) Prove that the two series $\sum_{n} \sqrt{a_n a_{n+1}}$ and $\sum_{n} \frac{\sqrt{a_n}}{n}$ are convergent if it is the series $\sum_{n} a_n$.

Problem 5.2.10

- a) Show that the series $\sum_{n=0}^{\infty} b_n 10^{-n}$, where $b_n \in \{0, 1, \dots, 9\}$ for $n \ge 1$ and $b_0 \in \mathbb{Z}$, converges. What does this series represent and why is it important?
- b) Compute the previous sum in the cases:

i)
$$b_n = 9$$
, $n \ge 0$; ii) $b_n = \begin{cases} 1 & n = 2k \\ 2 & n = 2k+1 \end{cases}$, $k \ge 0$.

Problem 5.2.11

a) Show that the equation $\operatorname{tg} x = x$ has a unique solution λ_n on each interval

$$\left(\frac{(2n-1)\pi}{2}, \frac{(2n+1)\pi}{2}\right), \qquad n = 1, 2, 3, \cdots$$

b) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{\lambda_n^2}$ is convergent.

Problem 5.2.12 Consider the sequence defined by $x_{n+1} = \sqrt{1+2x_n} - 1$, $x_0 = 1$.

- a) Show that it is convergent and compute the limit.
- b) Find the limits

$$i)$$
 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$, $ii)$ $\lim_{n\to\infty} nx_n$.

c) Study the convergence of the series

$$i)$$
 $\sum_{n=0}^{\infty} x_n, \quad ii)$ $\sum_{n=0}^{\infty} x_n^2.$

