uc3m Universidad Carlos III de Madrid
 Departamento de Matemáticas

DIFFERENTIAL CALCULUS
 SELF-EVALUATION I - SOLUTIONS
 Degree in Applied Mathematics and Computation

Time: 1 hour

Problem $1(0.5+1+1+0.5=3$ points $)$
Compute the following limits (if they exist):

$$
\begin{aligned}
& \text { a) } \lim _{x \rightarrow \pi / 2}(\sin x)^{3 /\left(\cos ^{2} x\right)}, \quad \text { b) } \lim _{t \rightarrow 0} \frac{3-5 \mathrm{e}^{2 / t}}{2+\mathrm{e}^{2 / t}}, \\
& \text { c) } \lim _{x \rightarrow 1} \log x \cdot \log (x-1), \quad \text { d) } \lim _{x \rightarrow 0} \frac{1+\sin x-\mathrm{e}^{x}}{\operatorname{arctg} x} .
\end{aligned}
$$

Solution:
a) This is of the kind 1^{∞} :

$$
\lim _{x \rightarrow \pi / 2}(\sin x)^{3 /\left(\cos ^{2} x\right)}=\exp \left(\lim _{x \rightarrow \pi / 2} \frac{3(\sin x-1)}{\cos ^{2} x}\right)=\exp \left(\lim _{x \rightarrow \pi / 2} \frac{3\left(-\cos ^{2} x\right)}{\cos ^{2} x(\sin x+1)}\right)=\exp \left(\frac{-3}{2}\right) .
$$

b) When $t \rightarrow 0^{-}$we have $2 / t \rightarrow-\infty$, so $\mathrm{e}^{2 / t} \rightarrow 0$, and then:

$$
\lim _{t \rightarrow 0} \frac{3-5 \mathrm{e}^{2 / t}}{2+\mathrm{e}^{2 / t}}=\frac{3}{2} .
$$

If $t \rightarrow 0^{+}$, then $2 / t \rightarrow \infty$ and $\mathrm{e}^{2 / t} \rightarrow \infty$, this means:

$$
\lim _{t \rightarrow 0} \frac{3-5 \mathrm{e}^{2 / t}}{2+\mathrm{e}^{2 / t}}=-5
$$

Then the limit does not exist.
c) We build a quotient where numerator and denominator tend to ∞ to use L'Hôpital's rule:
$\lim _{x \rightarrow 1} \log x \cdot \log (x-1)=\lim _{x \rightarrow 1} \frac{\log (x-1)}{1 / \log x}=\lim _{x \rightarrow 1} \frac{1 /(x-1)}{-1 /\left(x \log ^{2} x\right)}=\lim _{x \rightarrow 1} \frac{x \log ^{2} x}{1-x}=\lim _{x \rightarrow 1} \frac{\log ^{2} x+2 \log x}{-1}=0$.
d) Numerator and denominator tend to zero, we use L'Hôpital's rule:

$$
\lim _{x \rightarrow 0} \frac{1+\sin x-\mathrm{e}^{x}}{\operatorname{arctg} x}=\lim _{x \rightarrow 0} \frac{\cos x-\mathrm{e}^{x}}{1 /\left(1+x^{2}\right)}=0 .
$$

Problem $2(0.5+0.5=1$ point)
Study the continuity of the functions:
a) $f(x)=\frac{\sqrt{1-\sqrt{9-x^{2}}}}{x}, \quad$ b) $g(x)=\arcsin (\log |x-1|)$.

Solution:

The functions are continuous in their domains, since they are composition of continuous functions.
a) First of all $x \neq 0$. For the inner root we need:

$$
9-x^{2} \geq 0 \Longrightarrow 9 \geq x^{2} \Longrightarrow x \in[-3,3],
$$

and also

$$
1-\sqrt{9-x^{2}} \geq 0 \Longrightarrow 1 \geq \sqrt{9-x^{2}} \Longrightarrow 1 \geq 9-x^{2} \Longrightarrow x^{2} \geq 8 \Longrightarrow|x| \geq 2 \sqrt{2},
$$

joining the three conditions, $\operatorname{Dom}(f)=\{x \in \mathbb{R}: 2 \sqrt{2} \leq|x| \leq 3\}$.
b) On one side, we need

$$
x-1 \neq 0 \Longrightarrow x \neq 1 .
$$

Since the domain of arcsin is $[-1,1]$, we must have $\log |x-1| \in[-1,1]$, so

$$
|x-1| \in\left[\mathrm{e}^{-1}, \mathrm{e}\right] \Longleftrightarrow x-1 \in\left[\mathrm{e}^{-1}, \mathrm{e}\right] \cup\left[-\mathrm{e},-\mathrm{e}^{-1}\right] \Longleftrightarrow x \in\left[1+\mathrm{e}^{-1}, 1+\mathrm{e}\right] \cup\left[1-\mathrm{e}, 1-\mathrm{e}^{-1}\right] .
$$

Hence, $\operatorname{Dom}(g)=\left[1+\mathrm{e}^{-1}, 1+\mathrm{e}\right] \cup\left[1-\mathrm{e}, 1-\mathrm{e}^{-1}\right]$.

Problem 3 (2 points)

Prove that the equation

$$
2 x+\sin \frac{\pi x}{2}=\frac{10}{1+\sqrt{x}}
$$

has exactly one root in $[0, \infty)$ and find an interval $[n, n+1)$, with $n \in \mathbb{N}$, where this root is found.

Solution:

The roots are the zeroes of the function

$$
f(x)=2 x+\sin \frac{\pi x}{2}-\frac{10}{1+\sqrt{x}}
$$

with domain $[0, \infty)$, there it is continuous and it is differentiable in $(0, \infty)$. The derivative is:

$$
f^{\prime}(x)=2+\frac{\pi}{2} \cos \frac{\pi x}{2}+\frac{5}{\sqrt{x}(1+\sqrt{x})^{2}}>0, \quad x>0,
$$

since $\left|\cos \frac{\pi x}{2}\right|<1 \Longrightarrow 2+\frac{\pi}{2} \cos \frac{\pi x}{2}>0$ and $\frac{5}{\sqrt{x}(1+\sqrt{x})^{2}}>0$, then f is increasing in $[0, \infty)$, so at most it has one root in that interval. We seek now a change of sign to use Bolzano's theorem:
$f(0)=-5<0, \quad f(1)=3-5=-2<0, \quad f(2)=4-\frac{10}{1+\sqrt{2}}<0, \quad f(3)=5-\frac{10}{1+\sqrt{3}}>0$.
Then the root is in $[2,3)$.

Problem 4 (2 points)
Consider a function f such that $f(1 / 2)=-3$ and $f^{\prime}(x)=\sqrt{x^{2}+2}$. If

$$
g(x)=x^{2} f\left(\frac{x-1}{x}\right),
$$

obtain the tangent line to the graph of g at the point $x=2$.
Solution:
We need $g(2)=4 f\left(\frac{1}{2}\right)=-12$ and also the derivative:

$$
g^{\prime}(x)=2 x f\left(\frac{x-1}{x}\right)+x^{2} f^{\prime}\left(\frac{x-1}{x}\right) \frac{1}{x^{2}}=2 x f\left(\frac{x-1}{x}\right)+x^{2} \sqrt{\left(\frac{x-1}{x}\right)^{2}+2} \cdot \frac{1}{x^{2}}
$$

$$
g^{\prime}(2)=4 f\left(\frac{1}{2}\right)+\sqrt{\frac{1}{4}+2}=-12+\frac{3}{2}=\frac{-21}{2}
$$

The tangent line is then:

$$
y=g(2)+g^{\prime}(2)(x-2)=-12-\frac{-21}{2}(x-2) \Longleftrightarrow y=9-\frac{21 x}{2} .
$$

Problem 5 (2 points)
Obtain the minimum value of α for which the function $f(x)=\left|\alpha x^{2}-2 \alpha x+3\right|$ is differentiable on the whole real line.

Solution:
For $\alpha=0$ the function is constant, so it is differentiable on the real line. If $\alpha \neq 0$, in order to have a differentiable function, the polynomial cannot have two different roots. This means:

$$
4 \alpha^{2}-12 \alpha \leq 0 \Longleftrightarrow \alpha(\alpha-3) \leq 0 \Longleftrightarrow \alpha \in[0,3]
$$

The minimum value of α is then 0 .

In the graph appear the cases $\alpha>3, \alpha=3$ and $0<\alpha<3$ at the left and $\alpha=0$ and $\alpha<0$ at the right.

