uc3m Universidad Carlos III de Madrid
 Departamento de Matemáticas

DIFFERENTIAL CALCULUS
 SELF-EVALUATION II - SOLUTIONS
 Degree in Applied Mathematics and Computation

Time: 90 minutes

Problem 1 (2 points)

Plot the graph of the function: $f(x)=x \sqrt{\left|x^{2}-1\right|}$.
Solution:
$\operatorname{Dom}(f)=\mathbb{R}$ and it is odd. The function is:

$$
f(x)= \begin{cases}x \sqrt{x^{2}-1}, & |x| \geq 1, \\ x \sqrt{1-x^{2}}, & |x|<1 .\end{cases}
$$

We study the asymptotes:

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} x \sqrt{x^{2}-1}=\infty, & \lim _{x \rightarrow \infty} \frac{x \sqrt{x^{2}-1}}{x}=\infty, \\
\lim _{x \rightarrow-\infty} x \sqrt{x^{2}-1}=-\infty, & \lim _{x \rightarrow-\infty} \frac{x \sqrt{x^{2}-1}}{x}=\infty,
\end{array}
$$

so, there are no horizontal nor oblique asymptotes. The derivative is:

$$
f^{\prime}(x)= \begin{cases}\sqrt{x^{2}-1}+\frac{x^{2}}{\sqrt{x^{2}-1}}, & |x|>1 \\ \sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}}, & |x|<1\end{cases}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} \sqrt{x^{2}-1}+\frac{x^{2}}{\sqrt{x^{2}-1}}=\infty, \quad \lim _{x \rightarrow 1^{-}} \sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}}=-\infty \\
& \lim _{x \rightarrow-1^{+}} \sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}}=-\infty, \quad \lim _{x \rightarrow-1^{-}} \sqrt{x^{2}-1}+\frac{x^{2}}{\sqrt{x^{2}-1}}=\infty
\end{aligned}
$$

so, the points 1 and -1 have no derivative. Also, for $|x|<1$:

$$
f^{\prime}(x)=\sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}}=0 \Longrightarrow x= \pm \frac{1}{\sqrt{2}} .
$$

These are the critical points. On $|x|>1$ there are no critical points. Besides: $f^{\prime}>0$ on $|x|>1$ and on $|x|<\frac{1}{\sqrt{2}}$, so there f is increasing, and $f^{\prime}<0$ on $\frac{1}{\sqrt{2}}<|x|<1$, so there f is decreasing. The points -1 and $\frac{1}{\sqrt{2}}$ are a local maxima and $-\frac{1}{\sqrt{2}}$ and 1 are local minima. Besides,

$$
f^{\prime \prime}(x)=\left\{\begin{array}{ll}
\frac{2 x^{3}-3 x}{\left(x^{2}-1\right)^{3 / 2}} & |x|>1, \\
\frac{2 x^{3}-3 x}{\left(1-x^{2}\right)^{3 / 2}}, & |x|<1,
\end{array}=0 \quad \Longrightarrow\left\{\begin{array}{l}
x=0, \\
x= \pm \sqrt{\frac{3}{2}} .
\end{array}\right.\right.
$$

With this we obtain: $f^{\prime \prime}>0$ on $\left(-\sqrt{\frac{3}{2}},-1\right) \cup(-1,0) \cup\left(\sqrt{\frac{3}{2}}, \infty\right)$, here f is convex, and $f^{\prime \prime}<0$ on $\left(-\infty,-\sqrt{\frac{3}{2}}\right) \cup(0,1) \cup\left(1, \sqrt{\frac{3}{2}}\right)$, where f is concave. The points $0,-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$ are inflection points.

Problem 2 (3 points)

a) Prove that the function $g(x)=\max \left\{\log \left(1+x^{2}\right),|x|+\alpha\right\}$ verifies the hypothesis of the mean value theorem in any interval $[a, b] \in \mathbb{R}$ if and only if $\alpha=\log 2-1$.
b) For the previous value of α, obtain the point or points whose existence is guaranteed by the aforementioned theorem applied to the function g in the interval $[-1,2]$.
c) Obtain the Taylor polynomial of $f(x)=\sin (x / 2)+x^{2} \mathrm{e}^{x}$ of order 3 at the origin and estimate the error using that polynomial to approximate the function on $[-1 / 4,1 / 4]$.

Solution:

a) The function must be differentiable on \mathbb{R}. The logarithm is differentiable on \mathbb{R}, and $|x|+\alpha$ is differentiable outside the origin. If the functions $f(x)=\log \left(1+x^{2}\right)$ and $h(x)=|x|+\alpha$ intersect at $x= \pm A$ (by symmetry), then we have $f(A)=h(A), f^{\prime}(A)=h^{\prime}(A)$, which implies $A=1$ and the value $\alpha=\log 2-1$. Observe that in this case:

$$
g(x)= \begin{cases}\log \left(1+x^{2}\right), & |x| \leq 1 \\ |x|+\log 2-1, & |x|>1\end{cases}
$$

b) By the mean value theorem, there exists some c for which:

$$
g^{\prime}(c)=\frac{g(2)-g(-1)}{2+1}=\frac{1}{3} .
$$

On the interval $[1,2]$ the derivative is 1 , so we try for $c \in[-1,1]$:

$$
g^{\prime}(c)=\frac{2 c}{1+c^{2}} \quad \Longrightarrow \quad c=3-2 \sqrt{2} \in[-1,1] .
$$

c)

$$
P_{3,0} f(x)=\left(\frac{x}{2}-\frac{x^{3}}{3!8}\right)+x^{2}(1+x)=2 x+x^{2}-\frac{2 x^{3}}{3!} .
$$

Now, we use the Lagrange formula for the Taylor remainder:

$$
R_{3,0} f(x)=\frac{f^{I V)}(t)}{4!} x^{4} \quad \Longrightarrow \quad\left|R_{3,0} f(x)\right| \leq \frac{\left|f^{I V)}(t)\right|}{4!} \frac{1}{2^{4}}, \quad t \in[-1 / 2,1 / 2] .
$$

Now we bound the fourth derivative on $[-1 / 2,1 / 2]$:
$\left|f^{I V)}(t)\right|=\left|\frac{\sin \left(\frac{t}{2}\right)}{2^{4}}+\mathrm{e}^{t}\left(11+7 t+t^{2}\right)\right|<2^{-4}+\mathrm{e}^{1 / 2}\left(11+\frac{7}{2}+\frac{1}{4}\right)=2^{-4}+\frac{59 \sqrt{\mathrm{e}}}{4}<2^{-4}+\frac{59}{2}<30$
Then, $\left|R_{3,0} f(x)\right| \leq \frac{30}{4!2^{4}}=\frac{5}{2^{6}}$.

Problem 3 (3 points)

a) Obtain the limit:

$$
\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n]{a}+\sqrt[n]{b}}{2}\right)^{n}, \quad a, b>0
$$

b) If we have $\lim _{n \rightarrow \infty} a_{n}=\ell$, find: $\lim _{n \rightarrow \infty} \frac{a_{1}+\frac{a_{2}}{2}+\cdots+\frac{a_{n}}{n}}{\log (n+1)}$.
c) Study the convergence of the following recurring sequence and find its limit if it exists:

$$
a_{0}=\frac{1}{2}, \quad a_{n+1}=\sqrt{1+3 a_{n}}-1
$$

Solution:

a) Since $\lim _{n \rightarrow \infty} \sqrt[n]{a}=\lim _{n \rightarrow \infty} \sqrt[n]{b}=1$:

$$
\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n]{a}+\sqrt[n]{b}}{2}\right)^{n}=\mathrm{e}^{\lim _{n \rightarrow \infty} n\left(\frac{\sqrt[n]{a}+\sqrt[n]{b}}{2}-1\right)}=L
$$

The exponent is, changing the variable and using L'Hôpital:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\mathrm{e}^{(\log a) / x}+\mathrm{e}^{(\log b) / x}-2}{2 / x}=\lim _{t \rightarrow 0^{+}} \frac{\mathrm{e}^{t \log a}+\mathrm{e}^{t \log b}-2}{2 t} \\
& =\lim _{t \rightarrow 0^{+}} \frac{(\log a) \mathrm{e}^{t \log a}+(\log b) \mathrm{e}^{t \log b}}{2}=\frac{\log a+\log b}{2}=\log (a b)^{1 / 2} .
\end{aligned}
$$

So, $L=\mathrm{e}^{\log (a b)^{1 / 2}}=\sqrt{a b}$.
b) We can use Stolz's criterion, since $\log (n+1)$ is increasing with limit ∞ :

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+\frac{a_{2}}{2}+\cdots+\frac{a_{n}}{n}}{\log (n+1)}=\lim _{n \rightarrow \infty} \frac{\frac{a_{n}}{n}}{\log (n+1)-\log n}=\lim _{n \rightarrow \infty} \frac{a_{n}}{\log \left(\frac{n+1}{n}\right)^{n}}=\lim _{n \rightarrow \infty} a_{n}=\ell .
$$

c) $a_{1}=\sqrt{1+\frac{3}{2}}-1=\sqrt{\frac{5}{2}}-1>\frac{1}{2}$. We suppose now that $a_{n}>a_{n-1}$, then:

$$
a_{n+1}=\sqrt{1+3 a_{n}}-1>\sqrt{1+3 a_{n-1}}-1=a_{n}
$$

so, by induction, the sequence is increasing. The possible limit satisfies:
$\ell=\sqrt{1+3 \ell}-1 \quad \Longrightarrow \quad(\ell+1)^{2}=1+3 \ell \quad \Longrightarrow \quad \ell^{2}-\ell=\ell(\ell-1)=0 \quad \Longrightarrow \quad \ell=0, \ell=1$.
We have $a_{0}<1$, suppose now that $a_{n}<1$, then

$$
a_{n+1}=\sqrt{1+3 a_{n}}-1<\sqrt{4}-1=1,
$$

thus, the sequence is bounded above by 1 and the sequence converges. The limit is $\ell=1$, since all the terms are positive and the sequence is increasing.

Problem 4 ($1+1=2$ points)

Study the convergence of the series:

$$
\text { a) } \sum_{n=2}^{\infty} \frac{2}{(\log n)^{\log n}}, \quad \text { b) } \sum_{n=2}^{\infty} \frac{(-1)^{n} n!\mathrm{e}^{n}}{n^{n+1}} .
$$

Solution:
a) We can use the comparison test:

$$
(\log n)^{\log n}=n^{\log (\log n)},
$$

and $\log (\log n)>2$ for $n>\mathrm{e}^{\mathrm{e}^{2}}$, so we compare with the 2-harmonic series, that converges:

$$
\sum_{n=2}^{\infty} \frac{2}{(\log n)^{\log n}}<\sum_{n=2}^{\infty} \frac{2}{n^{2}}
$$

Then, our series converges.
b) This is an alternating series. For the absolute convergence we study: $\sum_{n=2}^{\infty} \frac{n!\mathrm{e}^{n}}{n^{n+1}}$. Using Stirling's formula we find that:

$$
\lim _{n \rightarrow \infty} \frac{n!\mathrm{e}^{n}}{n^{n+1}}=\lim _{n \rightarrow \infty} \frac{n^{n} \mathrm{e}^{-n} \sqrt{2 \pi n} \mathrm{e}^{n}}{n^{n+1}}=\lim _{n \rightarrow \infty} \sqrt{\frac{2 \pi}{n}}
$$

Thus, our series can be compared with the series $\sum_{n=2}^{\infty} \frac{1}{n^{1 / 2}}$, that is divergent. We obtain:

$$
\lim _{n \rightarrow \infty} \frac{n!\mathrm{e}^{n}}{n^{n+1}}: \frac{1}{n^{1 / 2}}=\lim _{n \rightarrow \infty} \sqrt{2 \pi}
$$

so both series diverge and our original series does not converge absolutely. For the conditional convergence we use Leibniz's criterion: The general term without the sign, is like $\sqrt{\frac{2 \pi}{n}}$, that decreases to zero, so the series converges conditionally.

