
DIFFERENTIAL CALCULUS
SELF-EVALUATION II - SOLUTIONS

Degree in Applied Mathematics and Computation

Time: 90 minutes

Problem 1 (2 points)
Plot the graph of the function: f(x) = x

√
|x2 − 1|.

Solution:
Dom(f) = R and it is odd. The function is:

f(x) =

{
x
√
x2 − 1, |x| ≥ 1,

x
√
1− x2, |x| < 1.

We study the asymptotes:

lim
x→∞

x
√
x2 − 1 = ∞, lim

x→∞

x
√
x2 − 1

x
= ∞,

lim
x→−∞

x
√
x2 − 1 = −∞, lim

x→−∞

x
√
x2 − 1

x
= ∞,

so, there are no horizontal nor oblique asymptotes. The derivative is:

f ′(x) =


√
x2 − 1 +

x2√
x2 − 1

, |x| > 1,

√
1− x2 − x2√

1− x2
, |x| < 1,

and

lim
x→1+

√
x2 − 1 +

x2√
x2 − 1

= ∞, lim
x→1−

√
1− x2 − x2√

1− x2
= −∞,

lim
x→−1+

√
1− x2 − x2√

1− x2
= −∞, lim

x→−1−

√
x2 − 1 +

x2√
x2 − 1

= ∞,

so, the points 1 and −1 have no derivative. Also, for |x| < 1:

f ′(x) =
√
1− x2 − x2√

1− x2
= 0 =⇒ x = ± 1√

2
.

These are the critical points. On |x| > 1 there are no critical points. Besides: f ′ > 0 on |x| > 1

and on |x| < 1√
2
, so there f is increasing, and f ′ < 0 on

1√
2
< |x| < 1, so there f is decreasing.

The points −1 and
1√
2
are a local maxima and − 1√

2
and 1 are local minima. Besides,

f ′′(x) =


2x3 − 3x

(x2 − 1)3/2
|x| > 1,

2x3 − 3x

(1− x2)3/2
, |x| < 1,

= 0 =⇒

{
x = 0,

x = ±
√

3
2 .
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With this we obtain: f ′′ > 0 on
(
−
√

3
2 ,−1

)
∪ (−1, 0)∪

(√
3
2 ,∞

)
, here f is convex, and f ′′ < 0

on
(
−∞,−

√
3
2

)
∪(0, 1)∪

(
1,
√

3
2

)
, where f is concave. The points 0, −

√
3
2 and

√
3
2 are inflection

points.
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Problem 2 (3 points)

a) Prove that the function g(x) = max{log(1 + x2), |x| + α} verifies the hypothesis of the
mean value theorem in any interval [a, b] ∈ R if and only if α = log 2− 1.

b) For the previous value of α, obtain the point or points whose existence is guaranteed by
the aforementioned theorem applied to the function g in the interval [−1, 2].

c) Obtain the Taylor polynomial of f(x) = sin(x/2) + x2ex of order 3 at the origin and
estimate the error using that polynomial to approximate the function on [−1/4, 1/4].

Solution:

a) The function must be differentiable on R. The logarithm is differentiable on R, and |x|+α
is differentiable outside the origin. If the functions f(x) = log(1 + x2) and h(x) = |x|+ α
intersect at x = ±A (by symmetry), then we have f(A) = h(A), f ′(A) = h′(A), which
implies A = 1 and the value α = log 2− 1. Observe that in this case:

g(x) =

{
log(1 + x2), |x| ≤ 1,
|x|+ log 2− 1, |x| > 1.

b) By the mean value theorem, there exists some c for which:

g′(c) =
g(2)− g(−1)

2 + 1
=

1

3
.

On the interval [1, 2] the derivative is 1, so we try for c ∈ [−1, 1]:

g′(c) =
2c

1 + c2
=⇒ c = 3− 2

√
2 ∈ [−1, 1].

c)

P3,0f(x) =

(
x

2
− x3

3!8

)
+ x2 (1 + x) = 2x+ x2 − 2x3

3!
.

Now, we use the Lagrange formula for the Taylor remainder:

R3,0f(x) =
f IV )(t)

4!
x4 =⇒ |R3,0f(x)| ≤

|f IV )(t)|
4!

1

24
, t ∈ [−1/2, 1/2].

Now we bound the fourth derivative on [−1/2, 1/2]:

|f IV )(t)| =
∣∣∣∣sin( t2)24

+ et(11 + 7t+ t2)

∣∣∣∣ < 2−4+e1/2(11+
7

2
+
1

4
) = 2−4+

59
√
e

4
< 2−4+

59

2
< 30

Then, |R3,0f(x)| ≤
30

4!24
=

5

26
.

2



Problem 3 (3 points)

a) Obtain the limit:

lim
n→∞

(
n
√
a+ n

√
b

2

)n

, a, b > 0,

b) If we have lim
n→∞

an = ℓ, find: lim
n→∞

a1 +
a2
2

+ · · ·+ an
n

log(n+ 1)
.

c) Study the convergence of the following recurring sequence and find its limit if it exists:

a0 =
1

2
, an+1 =

√
1 + 3an − 1

Solution:

a) Since lim
n→∞

n
√
a = lim

n→∞
n
√
b = 1:

lim
n→∞

(
n
√
a+ n

√
b

2

)n

= e
lim

n→∞
n
( n√a+

n√
b

2
−1

)
= L.

The exponent is, changing the variable and using L’Hôpital:

lim
x→∞

e(log a)/x + e(log b)/x − 2

2/x
= lim

t→0+

et log a + et log b − 2

2t

= lim
t→0+

(log a)et log a + (log b)et log b

2
=

log a+ log b

2
= log(ab)1/2.

So, L = elog(ab)
1/2

=
√
ab.

b) We can use Stolz’s criterion, since log(n+ 1) is increasing with limit ∞:

lim
n→∞

a1 +
a2
2

+ · · ·+ an
n

log(n+ 1)
= lim

n→∞

an
n

log(n+ 1)− log n
= lim

n→∞

an

log(n+1
n )n

= lim
n→∞

an = ℓ.

c) a1 =
√
1 + 3

2 − 1 =
√

5
2 − 1 > 1

2 . We suppose now that an > an−1, then:

an+1 =
√
1 + 3an − 1 >

√
1 + 3an−1 − 1 = an.

so, by induction, the sequence is increasing. The possible limit satisfies:

ℓ =
√
1 + 3ℓ−1 =⇒ (ℓ+1)2 = 1+3ℓ =⇒ ℓ2−ℓ = ℓ(ℓ−1) = 0 =⇒ ℓ = 0, ℓ = 1.

We have a0 < 1, suppose now that an < 1, then

an+1 =
√
1 + 3an − 1 <

√
4− 1 = 1,

thus, the sequence is bounded above by 1 and the sequence converges. The limit is ℓ = 1,
since all the terms are positive and the sequence is increasing.

Problem 4 (1 + 1 = 2 points)
Study the convergence of the series:

a)
∞∑
n=2

2

(log n)logn
, b)

∞∑
n=2

(−1)nn!en

nn+1
.

3



Solution:

a) We can use the comparison test:

(log n)logn = nlog(logn),

and log(log n) > 2 for n > ee
2
, so we compare with the 2-harmonic series, that converges:

∞∑
n=2

2

(log n)logn
<

∞∑
n=2

2

n2
.

Then, our series converges.

b) This is an alternating series. For the absolute convergence we study:

∞∑
n=2

n!en

nn+1
. Using

Stirling’s formula we find that:

lim
n→∞

n!en

nn+1
= lim

n→∞

nne−n
√
2πn en

nn+1
= lim

n→∞

√
2π

n
.

Thus, our series can be compared with the series

∞∑
n=2

1

n1/2
, that is divergent. We obtain:

lim
n→∞

n!en

nn+1
:

1

n1/2
= lim

n→∞

√
2π,

so both series diverge and our original series does not converge absolutely. For the condi-
tional convergence we use Leibniz’s criterion: The general term without the sign, is like√

2π

n
, that decreases to zero, so the series converges conditionally.
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