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Problem 1 (2 points)
Plot the graph of the function: f(z) = z\/|z? — 1|.

SOLUTION:
Dom(f) = R and it is odd. The function is:

f( )_ xvxz—l’ |$|213
7= V1 —22 |z|<1.

We study the asymptotes:
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so, there are no horizontal nor oblique asymptotes. The derivative is:
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so, the points 1 and —1 have no derivative. Also, for |z| < 1:
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These are the critical points. On |z| > 1 there are no critical points. Besides: f' > 0 on |z| > 1
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and on |z| < —=, so there f is increasing, and f’ < 0 on — < |z| < 1, so there f is decreasing.
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With this we obtain: f” > 0 on (—\/g, —1) U(—=1,0)U (\/g, oo), here f is convex, and f” <0
on (—oo, —\/§> u(0,1)u (1, \/§>, where f is concave. The points 0, —\/g and \/g are inflection

points.

Problem 2 (3 points)

a) Prove that the function g(z) = max{log(1 + 2?), || + a} verifies the hypothesis of the
mean value theorem in any interval [a,b] € R if and only if & =log2 — 1.

b) For the previous value of «, obtain the point or points whose existence is guaranteed by
the aforementioned theorem applied to the function ¢ in the interval [—1,2].

c¢) Obtain the Taylor polynomial of f(z) = sin(z/2) + 2%e® of order 3 at the origin and
estimate the error using that polynomial to approximate the function on [—1/4,1/4].

SOLUTION:

a) The function must be differentiable on R. The logarithm is differentiable on R, and |z|+ «
is differentiable outside the origin. If the functions f(x) = log(1 + #?) and h(z) = |z| + «
intersect at x = +A (by symmetry), then we have f(A) = h(A), f'(A) = h'(A), which
implies A = 1 and the value a = log2 — 1. Observe that in this case:

()= { s+, Jzl <1,
FEZ\ o) +1og2 — 1, || > 1.

b) By the mean value theorem, there exists some ¢ for which:

92)—g(=1) 1

/ = 5 ==
9@ =" 3
On the interval [1,2] the derivative is 1, so we try for ¢ € [—1, 1]:
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'(¢) = =3-2V2¢[-1,1].
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Now, we use the Lagrange formula for the Taylor remainder:
) 4 @) 1
Rs of( ) = m = ]R370f(x)\ < 1 GYE te[-1/2,1/2].
Now we bound the fourth derivative on [—1/2,1/2]:
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Problem 3 (3 points)

a) Obtain the limit:

b) If we have nh_{glo an = ¢, find: nh_)rglo og(n + 1)

¢) Study the convergence of the following recurring sequence and find its limit if it exists:

CLOZ%a ant1 =V1+3a, — 1
SOLUTION:
a) Since 7}1_)120 Va = nh—>Holo Vb =1
lim <M>n = enllmoon(%%_o = L.
n—00 2

The exponent is, changing the variable and using L.’Hopital:

) elloga)/z + ellogb)/z _ 9 ) ctloga + etloghb _ 9
lim = lim
T—00 2/x t—0+ 2t

i (loga)et'*s® 4 (logb)et'e®  loga 4+ logh
= 1m = =
t—0+ 2 2

So, L = elog(ab)l/2 _ \/%

b) We can use Stolz’s criterion, since log(n + 1) is increasing with limit oo:

log(ab)/2.
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c) ap =4/1+ % —-1= \/g— 1> % We suppose now that a,, > a,_1, then:

an+1:m—l>m—1:an.
s0, by induction, the sequence is increasing. The possible limit satisfies:
(=V1+30-1 = (1> =143 = PA=(l-1)=0 = (=0,/0=1.
We have ag < 1, suppose now that a, < 1, then
an+1:m—1<\/41—1:1,

thus, the sequence is bounded above by 1 and the sequence converges. The limit is £ = 1,
since all the terms are positive and the sequence is increasing.

Problem 4 (1 4+ 1 = 2 points)
Study the convergence of the series:
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SOLUTION:
a) We can use the comparison test:
(log n)logn _ nlog(logn)’

and log(logn) > 2 for n > ee2, so we compare with the 2-harmonic series, that converges:
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n=2 (log n) n=2 "
Then, our series converges.
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b) This is an alternating series. For the absolute convergence we study: Z P Using
n
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Stirling’s formula we find that:
nle™ o e ™"/ 2mn e 2
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Thus, our series can be compared with the series Z that is divergent. We obtain:
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so both series diverge and our original series does not converge absolutely. For the condi-
tional convergence we use Leibniz’s criterion: The general term without the sign, is like

27 . .
—, that decreases to zero, so the series converges conditionally.
n
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