uc3m Universidad Carlos III de Madrid
 Departamento de Matemáticas

DIFFERENTIAL CALCULUS

SELF-EVALUATION II

Degree in Applied Mathematics and Computation

Time: 90 minutes

Problem 1 (2 points)

Plot the graph of the function: $f(x)=x \sqrt{\left|x^{2}-1\right|}$.

Problem 2 (3 points)

a) Prove that the function $g(x)=\max \left\{\log \left(1+x^{2}\right),|x|+\alpha\right\}$ verifies the hypothesis of the mean value theorem in any interval $[a, b] \in \mathbb{R}$ if and only if $\alpha=\log 2-1$.
b) For the previous value of α, obtain the point or points whose existence is guaranteed by the aforementioned theorem applied to the function g in the interval $[-1,2]$.
c) Obtain the Taylor polynomial of $f(x)=\sin (x / 2)+x^{2} \mathrm{e}^{x}$ of order 3 at the origin and estimate the error using that polynomial to approximate the function on $[-1 / 4,1 / 4]$.

Problem 3 (3 points)

a) Obtain the limit:

$$
\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n]{a}+\sqrt[n]{b}}{2}\right)^{n}, \quad a, b>0
$$

b) If we have $\lim _{n \rightarrow \infty} a_{n}=\ell$, find: $\lim _{n \rightarrow \infty} \frac{a_{1}+\frac{a_{2}}{2}+\cdots+\frac{a_{n}}{n}}{\log (n+1)}$.
c) Study the convergence of the following recurring sequence and find its limit if it exists:

$$
a_{0}=\frac{1}{2}, \quad a_{n+1}=\sqrt{1+3 a_{n}}-1
$$

Problem 4 ($1+1=2$ points)
Study the convergence of the series:

$$
\text { a) } \sum_{n=2}^{\infty} \frac{2}{(\log n)^{\log n}}, \quad \text { b) } \sum_{n=2}^{\infty} \frac{(-1)^{n} n!\mathrm{e}^{n}}{n^{n+1}}
$$

