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Problem 1 (2,5 points)
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Obtain the graphic representation of: y = praEE Deduce the convexity and concavity without
x —

the second derivative.

SOLUTION:
Dom (f) =R\ {—1,1} and there are no symmetries. Also:
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lim — =0", == y =0 horizontal asymptote for z — oo.
z—o0o x4 — 1

With respect to x — —oo there aren’t asymptotes, nor horizontal nor oblique, since:
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At x = —1 there is a vertical asymptote from the two sides, because:
e " e "
lim —— = oo, lim —— = —o0.
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Also, at = 1 there is a vertical asymptote from the two sides:
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lim — = —0o0, lim — = +4o00.
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The derivative is:

—e (22 + 22 — 1) 0 s g —2++/8

f/(g;) = 1) = 5 = —1+2 critical points.

Besides, f/(z) > 0if 2 € (=1 — /2, —1)U (=1, =1+ v/2), there f is increasing; and f'(z) < 0 on
(=00, —1 —v/2) U (=1 ++/2,1)U (1, 00), there f decreases, so x = —1 — /2 is a local minimum
and £ = —1 + /2 is a local maximum. The second derivative is long to study:
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But we can deduce from the asymptotes and the local extrema that f is convex on (—oo,—1)U
(1,—00) and that f is concave on (—1,1). Also, there are no inflection points.



The vertical lines of the plot are not in the graph, they are produced by the computer.

Problem 2 (1 4+ 1 = 2 points)

a) Use Taylor’s theorem to compute: (using other method it is worth 0.8 points)

lim — ({ — —cotz | .
x—=0xr \XT

b) Obtain the Taylor polynomial (in its general form) of the functions f(z) = log(1 — z) and
g(z) = log(1 — 2?) at x¢ = 0.

SOLUTION:

a) We use the Taylor approximation of cosz and sinx:

1 /1 . sinx — xcosx
lim — | — —cotx ) = :hmz—,:
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b) The derivatives are:
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Then f(0) = 0, f/(0) = —1, f"(0) = —1, f”(0) = —=2,..., f"(0) = —(n —1)!, and the
polynomial of degree n is:
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The polynomial for g(x) is then:
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Problem 3 (1 4+ 1,5 = 2.5 points)
a) Compute the limit: li_)m (Vn2+1—+/n+1).
b) Study the convergence of the sequence defined by: a, = /3 + 2a,_1, ag = 0.

SOLUTION:



a) Multiply and divide by the conjugate twice:

(V2 +1—vn+ D)(Vn2+1+vn+1
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b) It is increasing, since a; = V3> 0=ag and if a,, > a,_; then:

an+1 = V3 +2a, > /3 +2a,_1 = an.

Also, we can obtain this using that the function that defines the recurrence is f(z) =
V3 + 22 and we check that
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This means that the sequence is monotonous and also convergent. Since a; = v/3 > 0 = aq,
the sequence is increasing (and also it is bounded below by zero). We compute the possible
limits:

() =

(=V3+20 = =342 = (2-20-3=((-3)((+1)=0.

Thus, £ = —1 or £ = 3. Let us prove if it is bounded above by 3: Using induction again:
ag < 3 and if a,,_1 < 3 then

an =/3+2a,-1 <V3+6=V9=3.

Hence, the sequence is increasing and bounded above, so it has a limit, that is 3, which is
the only possibility.

Problem 4 (1 + 1 4+ 1 = 3 points)
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a) Study the convergence (conditional and absolute) of the series: Z
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b) Study the convergence interval and the sum of the series:
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¢) Obtain the interval of convergence of the series: g — (@ =2)"
n

n=1

SOLUTION:

a) We study the series of the absolute values, using the quotient criterion:
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n—oo e(n + 1)
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So, the series converges absolutely and then it also converges conditionally.



b) The series of cosz is quite similar to this one, in fact:
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Z =z(cosx — 1).

The series is convergent on R, the same as the series of cosz.
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¢) The powers are centered at x = 2, this is the center of the interval of convergence. Now
consider a, = n™/n!, and compute the radius of convergence of the series
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This means that R = e~! and the series converges absolutely when |z — 2| < e™!, that is,
on (2 —e 124 e’l).

Let us study now the end-points. We substitute the values: # — 2 = +e~! and obtain the
two series:

[e.e] n

Sy = Z(il) o
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Since, when n — oo we have n! ~ v/2mnn"e™",
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and so the convergence of S is equivalent to the one of Z 17z which diverges since the
n
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exponent is less than 1. The series S_ is alternating, with general term decreasing to zero,
so, by Leibniz criterion, it converges (conditionally).

Joining everything, the interval of convergence is

[2—e 2471,
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