uc3m Universidad Carlos III de Madrid
 Departamento de Matemáticas

DIFFERENTIAL CALCULUS
 CONTROL II - SOLUTIONS

Degree in Applied Mathematics and Computation

Time: 90 minutes

Problem 1 (2,5 points)

Obtain the graphic representation of: $y=\frac{\mathrm{e}^{-x}}{x^{2}-1}$. Deduce the convexity and concavity without the second derivative.

Solution:

$\operatorname{Dom}(f)=\mathbb{R} \backslash\{-1,1\}$ and there are no symmetries. Also:

$$
\lim _{x \rightarrow \infty} \frac{\mathrm{e}^{-x}}{x^{2}-1}=0^{+}, \quad \Longrightarrow \quad y=0 \text { horizontal asymptote for } x \rightarrow \infty
$$

With respect to $x \rightarrow-\infty$ there aren't asymptotes, nor horizontal nor oblique, since:

$$
\lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{-x}}{x^{2}-1}=\infty, \quad \lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{-x}}{x\left(x^{2}-1\right)}=-\infty
$$

At $x=-1$ there is a vertical asymptote from the two sides, because:

$$
\lim _{x \rightarrow-1^{-}} \frac{\mathrm{e}^{-x}}{x^{2}-1}=\infty, \quad \lim _{x \rightarrow-1^{+}} \frac{\mathrm{e}^{-x}}{x^{2}-1}=-\infty
$$

Also, at $x=1$ there is a vertical asymptote from the two sides:

$$
\lim _{x \rightarrow 1^{-}} \frac{\mathrm{e}^{-x}}{x^{2}-1}=-\infty, \quad \lim _{x \rightarrow 1^{+}} \frac{\mathrm{e}^{-x}}{x^{2}-1}=+\infty
$$

The derivative is:

$$
f^{\prime}(x)=\frac{-\mathrm{e}^{-x}\left(x^{2}+2 x-1\right)}{\left(x^{2}-1\right)^{2}}=0 \quad \Longrightarrow \quad x=\frac{-2 \pm \sqrt{8}}{2}=-1 \pm \sqrt{2} \text { critical points. }
$$

Besides, $f^{\prime}(x)>0$ if $x \in(-1-\sqrt{2},-1) \cup(-1,-1+\sqrt{2})$, there f is increasing; and $f^{\prime}(x)<0$ on $(-\infty,-1-\sqrt{2}) \cup(-1+\sqrt{2}, 1) \cup(1, \infty)$, there f decreases, so $x=-1-\sqrt{2}$ is a local minimum and $x=-1+\sqrt{2}$ is a local maximum. The second derivative is long to study:

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\mathrm{e}^{-x}\left(x^{2}+2 x-1-2 x-2\right)\left(x^{2}-1\right)^{2}+2\left(x^{2}-1\right) 2 x \mathrm{e}^{-x}\left(x^{2}+2 x-1\right)}{\left(x^{2}-1\right)^{4}} \\
& =\frac{\mathrm{e}^{-x}\left[\left(x^{2}-3\right)\left(x^{2}-1\right)+4 x\left(x^{2}+2 x-1\right)\right]}{\left(x^{2}-1\right)^{3}}
\end{aligned}
$$

But we can deduce from the asymptotes and the local extrema that f is convex on $(-\infty,-1) \cup$ $(1,-\infty)$ and that f is concave on $(-1,1)$. Also, there are no inflection points.

The vertical lines of the plot are not in the graph, they are produced by the computer.

Problem $2(1+1=2$ points $)$

a) Use Taylor's theorem to compute: (using other method it is worth 0.8 points)

$$
\lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{x}-\cot x\right) .
$$

b) Obtain the Taylor polynomial (in its general form) of the functions $f(x)=\log (1-x)$ and $g(x)=\log \left(1-x^{2}\right)$ at $x_{0}=0$.

Solution:

a) We use the Taylor approximation of $\cos x$ and $\sin x$:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{x}-\cot x\right)==\lim _{x \rightarrow 0} \frac{\sin x-x \cos x}{x^{2} \sin x}= \\
& =\lim _{x \rightarrow 0} \frac{x-x^{3} / 6+o\left(x^{3}\right)-x+x^{3} / 2+o\left(x^{3}\right)}{x^{3}+o\left(x^{3}\right)}=\frac{1}{3} .
\end{aligned}
$$

b) The derivatives are:

$$
f^{\prime}(x)=\frac{-1}{1-x}, \quad f^{\prime \prime}(x)=\frac{-1}{(1-x)^{2}}, \quad f^{\prime \prime \prime}(x)=\frac{-2}{(1-x)^{3}}, \quad \ldots, \quad f^{n)}(x)=\frac{-(n-1)!}{(1-x)^{n}},
$$

Then $f(0)=0, f^{\prime}(0)=-1, f^{\prime \prime}(0)=-1, f^{\prime \prime \prime}(0)=-2, \ldots, f^{n)}(0)=-(n-1)$!, and the polynomial of degree n is:

$$
P_{n, 0} f(x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots-\frac{x^{n}}{n} .
$$

The polynomial for $g(x)$ is then:

$$
P_{2 n, 0} g(x)=-x^{2}-\frac{x^{4}}{2}-\frac{x^{6}}{3}-\cdots-\frac{x^{2 n}}{n} .
$$

Problem $3(1+1,5=2.5$ points)

a) Compute the limit: $\quad \lim _{n \rightarrow \infty}\left(\sqrt[4]{n^{2}+1}-\sqrt{n+1}\right)$.
b) Study the convergence of the sequence defined by: $a_{n}=\sqrt{3+2 a_{n-1}}, \quad a_{0}=0$.
a) Multiply and divide by the conjugate twice:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\sqrt[4]{n^{2}+1}-\sqrt{n+1}\right)=\lim _{n \rightarrow \infty} \frac{\left(\sqrt[4]{n^{2}+1}-\sqrt{n+1}\right)\left(\sqrt[4]{n^{2}+1}+\sqrt{n+1}\right.}{\left(\sqrt[4]{n^{2}+1}+\sqrt{n+1}\right)} \\
& \left.=\lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^{2}+1}-(n+1)\right)}{\left(\sqrt[4]{n^{2}+1}+\sqrt{n+1}\right)}=\lim _{n \rightarrow \infty} \frac{\left(n^{2}+1-(n+1)^{2}\right)}{\left(\sqrt[4]{n^{2}+1}+\sqrt{n+1}\right)\left(\sqrt{n^{2}+1}+n+1\right.}\right) \\
& =\lim _{n \rightarrow \infty} \frac{-2 n}{\left(\sqrt[4]{n^{2}+1}+\sqrt{n+1}\right)\left(\sqrt{n^{2}+1}+n+1\right)}=0 .
\end{aligned}
$$

b) It is increasing, since $a_{1}=\sqrt{3}>0=a_{0}$ and if $a_{n}>a_{n-1}$ then:

$$
a_{n+1}=\sqrt{3+2 a_{n}}>\sqrt{3+2 a_{n-1}}=a_{n} .
$$

Also, we can obtain this using that the function that defines the recurrence is $f(x)=$ $\sqrt{3+2 x}$ and we check that

$$
f^{\prime}(x)=\frac{1}{\sqrt{3+2 x}}>0, \quad\left|f^{\prime}(x)\right|<\frac{1}{\sqrt{3}}<1 .
$$

This means that the sequence is monotonous and also convergent. Since $a_{1}=\sqrt{3}>0=a_{0}$, the sequence is increasing (and also it is bounded below by zero). We compute the possible limits:

$$
\ell=\sqrt{3+2 \ell} \Rightarrow \ell^{2}=3+2 \ell \quad \Rightarrow \quad \ell^{2}-2 \ell-3=(\ell-3)(\ell+1)=0 .
$$

Thus, $\ell=-1$ or $\ell=3$. Let us prove if it is bounded above by 3: Using induction again: $a_{0}<3$ and if $a_{n-1}<3$ then

$$
a_{n}=\sqrt{3+2 a_{n-1}} \leq \sqrt{3+6}=\sqrt{9}=3 .
$$

Hence, the sequence is increasing and bounded above, so it has a limit, that is 3 , which is the only possibility.

Problem $4(1+1+1=3$ points)

a) Study the convergence (conditional and absolute) of the series: $\sum_{n=0}^{\infty} \frac{(-4)^{n}}{\mathrm{e}^{n} n!}$.
b) Study the convergence interval and the sum of the series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n)!}
$$

c) Obtain the interval of convergence of the series: $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}(x-2)^{n}$.

Solution:

a) We study the series of the absolute values, using the quotient criterion:

$$
\lim _{n \rightarrow \infty} \frac{4^{n+1}}{\mathrm{e}^{n+1}(n+1)!} \frac{\mathrm{e}^{n} n!}{4^{n}}=\lim _{n \rightarrow \infty} \frac{4}{\mathrm{e}(n+1)}=0<1
$$

So, the series converges absolutely and then it also converges conditionally.
b) The series of $\cos x$ is quite similar to this one, in fact:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n)!}=x \sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=x(\cos x-1)
$$

The series is convergent on \mathbb{R}, the same as the series of $\cos x$.
c) The powers are centered at $x=2$, this is the center of the interval of convergence. Now consider $a_{n}=n^{n} / n!$, and compute the radius of convergence of the series

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1} n!}{n^{n}(n+1)!}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n} \cdot(n+1) n!}{n^{n}(n+1) \cdot n!}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n}}{n^{n}} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\mathrm{e} .
\end{aligned}
$$

This means that $R=\mathrm{e}^{-1}$ and the series converges absolutely when $|x-2|<\mathrm{e}^{-1}$, that is, on ($2-\mathrm{e}^{-1}, 2+\mathrm{e}^{-1}$).
Let us study now the end-points. We substitute the values: $x-2= \pm \mathrm{e}^{-1}$ and obtain the two series:

$$
S_{ \pm}=\sum_{n=1}^{\infty}(\pm 1)^{n} \frac{n^{n}}{n!\mathrm{e}^{n}}
$$

Since, when $n \rightarrow \infty$ we have $n!\sim \sqrt{2 \pi n} n^{n} e^{-n}$,

$$
\frac{n^{n}}{n!e^{n}} \sim \frac{1}{\sqrt{2 \pi n}}=\frac{1}{\sqrt{2 \pi}} \frac{1}{n^{1 / 2}} .
$$

and so the convergence of S_{+}is equivalent to the one of $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$, which diverges since the exponent is less than 1 . The series S_{-}is alternating, with general term decreasing to zero, so, by Leibniz criterion, it converges (conditionally).
Joining everything, the interval of convergence is

$$
\left[2-\mathrm{e}^{-1}, 2+\mathrm{e}^{-1}\right) .
$$

