
DIFFERENTIAL CALCULUS
CONTROL II - SOLUTIONS

Degree in Applied Mathematics and Computation

Time: 90 minutes

Problem 1 (2,5 points)

Obtain the graphic representation of: y =
e−x

x2 − 1
. Deduce the convexity and concavity without

the second derivative.

Solution:
Dom (f) = R \ {−1, 1} and there are no symmetries. Also:

lim
x→∞

e−x

x2 − 1
= 0+, =⇒ y = 0 horizontal asymptote for x → ∞.

With respect to x → −∞ there aren’t asymptotes, nor horizontal nor oblique, since:

lim
x→−∞

e−x

x2 − 1
= ∞, lim

x→−∞

e−x

x(x2 − 1)
= −∞.

At x = −1 there is a vertical asymptote from the two sides, because:

lim
x→−1−

e−x

x2 − 1
= ∞, lim

x→−1+

e−x

x2 − 1
= −∞.

Also, at x = 1 there is a vertical asymptote from the two sides:

lim
x→1−

e−x

x2 − 1
= −∞, lim

x→1+

e−x

x2 − 1
= +∞.

The derivative is:

f ′(x) =
−e−x(x2 + 2x− 1)

(x2 − 1)2
= 0 =⇒ x =

−2±
√
8

2
= −1±

√
2 critical points.

Besides, f ′(x) > 0 if x ∈ (−1−
√
2,−1)∪ (−1,−1+

√
2), there f is increasing; and f ′(x) < 0 on

(−∞,−1−
√
2) ∪ (−1 +

√
2, 1) ∪ (1,∞), there f decreases, so x = −1−

√
2 is a local minimum

and x = −1 +
√
2 is a local maximum. The second derivative is long to study:

f ′′(x) =
e−x(x2 + 2x− 1− 2x− 2)(x2 − 1)2 + 2(x2 − 1)2xe−x(x2 + 2x− 1)

(x2 − 1)4

=
e−x[(x2 − 3)(x2 − 1) + 4x(x2 + 2x− 1)]

(x2 − 1)3
.

But we can deduce from the asymptotes and the local extrema that f is convex on (−∞,−1)∪
(1,−∞) and that f is concave on (−1, 1). Also, there are no inflection points.
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Graph

The vertical lines of the plot are not in the graph, they are produced by the computer.

Problem 2 (1 + 1 = 2 points)

a) Use Taylor’s theorem to compute: (using other method it is worth 0.8 points)

lim
x→0

1

x

(
1

x
− cotx

)
.

b) Obtain the Taylor polynomial (in its general form) of the functions f(x) = log(1− x) and
g(x) = log(1− x2) at x0 = 0.

Solution:

a) We use the Taylor approximation of cosx and sinx:

lim
x→0

1

x

(
1

x
− cotx

)
= = lim

x→0

sinx− x cosx

x2 sinx
=

= lim
x→0

x− x3/6 + o(x3)− x+ x3/2 + o(x3)

x3 + o(x3)
=

1

3
.

b) The derivatives are:

f ′(x) =
−1

1− x
, f ′′(x) =

−1

(1− x)2
, f ′′′(x) =

−2

(1− x)3
, . . . , fn)(x) =

−(n− 1)!

(1− x)n
,

Then f(0) = 0, f ′(0) = −1, f ′′(0) = −1, f ′′′(0) = −2, . . . , fn)(0) = −(n − 1)!, and the
polynomial of degree n is:

Pn,0f(x) = −x− x2

2
− x3

3
− · · · − xn

n
.

The polynomial for g(x) is then:

P2n,0g(x) = −x2 − x4

2
− x6

3
− · · · − x2n

n
.

Problem 3 (1 + 1,5 = 2.5 points)

a) Compute the limit: lim
n→∞

( 4
√
n2 + 1−

√
n+ 1).

b) Study the convergence of the sequence defined by: an =
√
3 + 2an−1, a0 = 0.

Solution:
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a) Multiply and divide by the conjugate twice:

lim
n→∞

( 4
√
n2 + 1−

√
n+ 1) = lim

n→∞

( 4
√
n2 + 1−

√
n+ 1)( 4

√
n2 + 1 +

√
n+ 1

( 4
√
n2 + 1 +

√
n+ 1)

= lim
n→∞

(
√
n2 + 1− (n+ 1))

( 4
√
n2 + 1 +

√
n+ 1)

= lim
n→∞

(n2 + 1− (n+ 1)2)

( 4
√
n2 + 1 +

√
n+ 1)(

√
n2 + 1 + n+ 1)

= lim
n→∞

−2n

( 4
√
n2 + 1 +

√
n+ 1)(

√
n2 + 1 + n+ 1)

= 0.

b) It is increasing, since a1 =
√
3 > 0 = a0 and if an > an−1 then:

an+1 =
√
3 + 2an >

√
3 + 2an−1 = an.

Also, we can obtain this using that the function that defines the recurrence is f(x) =√
3 + 2x and we check that

f ′(x) =
1√

3 + 2x
> 0, |f ′(x)| < 1√

3
< 1.

This means that the sequence is monotonous and also convergent. Since a1 =
√
3 > 0 = a0,

the sequence is increasing (and also it is bounded below by zero). We compute the possible
limits:

ℓ =
√
3 + 2ℓ ⇒ ℓ2 = 3 + 2ℓ ⇒ ℓ2 − 2ℓ− 3 = (ℓ− 3)(ℓ+ 1) = 0.

Thus, ℓ = −1 or ℓ = 3. Let us prove if it is bounded above by 3: Using induction again:
a0 < 3 and if an−1 < 3 then

an =
√

3 + 2an−1 ≤
√
3 + 6 =

√
9 = 3.

Hence, the sequence is increasing and bounded above, so it has a limit, that is 3, which is
the only possibility.

Problem 4 (1 + 1 + 1 = 3 points)

a) Study the convergence (conditional and absolute) of the series:
∞∑
n=0

(−4)n

enn!
.

b) Study the convergence interval and the sum of the series:

∞∑
n=1

(−1)nx2n+1

(2n)!
.

c) Obtain the interval of convergence of the series:
∞∑
n=1

nn

n!
(x− 2)n.

Solution:

a) We study the series of the absolute values, using the quotient criterion:

lim
n→∞

4n+1

en+1(n+ 1)!

enn!

4n
= lim

n→∞

4

e(n+ 1)
= 0 < 1,

So, the series converges absolutely and then it also converges conditionally.
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b) The series of cosx is quite similar to this one, in fact:

∞∑
n=1

(−1)nx2n+1

(2n)!
= x

∞∑
n=1

(−1)nx2n

(2n)!
= x(cosx− 1).

The series is convergent on R, the same as the series of cosx.

c) The powers are centered at x = 2, this is the center of the interval of convergence. Now
consider an = nn/n!, and compute the radius of convergence of the series

L = lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)n+1n!

nn(n+ 1)!
= lim

n→∞

(n+ 1)n · (n+ 1)n!

nn(n+ 1) · n!
= lim

n→∞

(n+ 1)n

nn

= lim
n→∞

(
1 +

1

n

)n

= e.

This means that R = e−1 and the series converges absolutely when |x− 2| < e−1, that is,
on

(
2− e−1, 2 + e−1

)
.

Let us study now the end-points. We substitute the values: x− 2 = ±e−1 and obtain the
two series:

S± =

∞∑
n=1

(±1)n
nn

n!en
.

Since, when n → ∞ we have n! ∼
√
2πnnne−n,

nn

n!en
∼ 1√

2πn
=

1√
2π

1

n1/2
.

and so the convergence of S+ is equivalent to the one of
∞∑
n=1

1

n1/2
, which diverges since the

exponent is less than 1. The series S− is alternating, with general term decreasing to zero,
so, by Leibniz criterion, it converges (conditionally).

Joining everything, the interval of convergence is[
2− e−1, 2 + e−1

)
.

Open Course Ware, UC3M
Elena Romera

4


