uc3m Universidad Carlos III de Madrid
 Departamento de Matemáticas

DIFFERENTIAL CALCULUS
 CONTROL II

Degree in Applied Mathematics and Computation

Time: 90 minutes

Problem 1 (2,5 points)
Obtain the graphic representation of: $y=\frac{\mathrm{e}^{-x}}{x^{2}-1}$. Deduce the convexity and concavity without the second derivative.

Problem $2(1+1=2$ points)
a) Use Taylor's theorem to compute: (using other method it is worth 0.8 points)

$$
\lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{x}-\cot x\right) .
$$

b) Obtain the Taylor polynomial (in its general form) of the functions $f(x)=\log (1-x)$ and $g(x)=\log \left(1-x^{2}\right)$ at $x_{0}=0$.

Problem $3(1+1,5=2.5$ points)
a) Compute the limit: $\quad \lim _{n \rightarrow \infty}\left(\sqrt[4]{n^{2}+1}-\sqrt{n+1}\right)$.
b) Study the convergence of the sequence defined by: $a_{n}=\sqrt{3+2 a_{n-1}}, \quad a_{0}=0$.

Problem $4(1+1+1=3$ points)

a) Study the convergence (conditional and absolute) of the series: $\sum_{n=0}^{\infty} \frac{(-4)^{n}}{\mathrm{e}^{n} n!}$.
b) Study the convergence interval and the sum of the series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n)!}
$$

c) Obtain the interval of convergence of the series: $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}(x-2)^{n}$.

