uc3m Universidad Carlos III de Madrid
 Departamento de Matemáticas

DIFFERENTIAL CALCULUS
EXTRAORDINARY EXAM - SOLUTIONS
Degree in Applied Mathematics and Computation

Time: 3 hours

Problem $1(1+1+1=3$ points $)$
a) Calculate the domain of the function $f(x)=\arcsin \left(\frac{x}{x^{2}+1}\right)$,
b) Find the minimum value k such that f is injective on $[k, \infty)$ and obtain the inverse function on that interval.
c) Prove that

$$
\arctan \left(\frac{1+x}{1-x}\right)-\arctan (x)=\frac{\pi}{4}, \quad x<1 .
$$

Solution:

a) The domain of $\arcsin (x)$ is $[-1,1]$, so we need $g(x)=\frac{x}{x^{2}+1} \in[-1,1]$. We observe that

$$
g^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}=0 \quad \Longrightarrow \quad x= \pm 1
$$

These are the critical points, g^{\prime} is positive on $(-1,1)$ and negative on $(-\infty,-1) \cup(1, \infty)$, so 1 is the global maximum and -1 the global minimum. Since $g(1)=\frac{1}{2}$ and $g(-1)=-\frac{1}{2}$ we obtain that $g(x) \in\left[-\frac{1}{2}, \frac{1}{2}\right] \in[-1,1]$ for $x \in \mathbb{R}$. This means that $\operatorname{Dom}(f)=\mathbb{R}$.
b) We can study the derivative:

$$
f^{\prime}(x)=\frac{1}{\sqrt{1-\left(\frac{x}{x^{2}+1}\right)^{2}}} \frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\sqrt{\left(x^{2}+1\right)^{2}-x^{2}\left(x^{2}+1\right)}}=0 \quad \Longrightarrow \quad x= \pm 1
$$

Thus f is injective for $x \in[1, \infty)$ because it is monotonous there. That is, $k=1$. For the inverse:

$$
\begin{aligned}
y & =\arcsin \left(\frac{x}{x^{2}+1}\right) \Longrightarrow \sin (y)=\frac{x}{x^{2}+1} \Longrightarrow \sin (y) x^{2}-x+\sin (y)=0 \\
& \Longrightarrow \quad x=\frac{1 \pm \sqrt{1-4 \sin ^{2}(y)}}{2 \sin (y)}=\frac{1}{2 \sin (y)} \pm \sqrt{\frac{1}{4 \sin ^{2}(y)}-1}
\end{aligned}
$$

The inverse is defined only when $x \geq 1$, so we choose the positive sign:

$$
f^{-1}(y)=\frac{1}{2 \sin (y)}+\sqrt{\frac{1}{4 \sin ^{2}(y)}-1} .
$$

c) First, we define the function:

$$
h(x)=\arctan \left(\frac{1+x}{1-x}\right)-\arctan (x) .
$$

The domain is $\mathbb{R} \backslash\{1\}$, because $\arctan (x)$ is defined on the whole real line. The derivative is:

$$
h^{\prime}(x)=\frac{1}{1+\left(\frac{1+x}{1-x}\right)^{2}} \frac{1-x+(1+x)}{(1-x)^{2}}-\frac{1}{1+x^{2}}=0
$$

hence the function is constant on each interval of its domain, in particular it is constant on $(-\infty, 1)$ and observe that: $h(0)=\arctan (1)-\arctan (0)=\frac{\pi}{4}$.

Problem 2 (2 points)

Plot the function $f(x)=x \sqrt{\left|x^{2}-4\right|}$, with all the calculations.

Solution:

$\operatorname{Dom}(f)=\mathbb{R}$, and $f(-x)=-f(x)$, so the function is odd.

$$
\lim _{x \rightarrow \infty} x \sqrt{\left|x^{2}-4\right|}=\infty, \quad \lim _{x \rightarrow-\infty} x \sqrt{\left|x^{2}-4\right|}=-\infty
$$

and then there are no horizontal asymptotes. Also:

$$
\lim _{x \rightarrow \pm \infty} \sqrt{\left|x^{2}-4\right|}=\infty
$$

thus, there are no oblique asymptotes either. There are no vertical asymptotes because the domain is \mathbb{R}. To obtain the derivative we first decompose f :
$f(x)=\left\{\begin{array}{ll}x \sqrt{4-x^{2}}, & x \in[-2,2], \\ x \sqrt{x^{2}-4}, & x \in(-\infty,-2) \cup(2, \infty) .\end{array} \Longrightarrow f^{\prime}(x)= \begin{cases}\frac{4-2 x^{2}}{\sqrt{4-x^{2}}}, & x \in(-2,2), \\ \frac{2 x^{2}-4}{\sqrt{x^{2}-4}}, & x \in(-\infty,-2) \cup(2, \infty) .\end{cases}\right.$
So, f is not differentiable at $x=-2$ nor at $x=2$. The critical points are $x= \pm \sqrt{2}$, both in $(-2,2)$.

$$
\left.\begin{array}{lll}
f^{\prime}>0 & \text { if } & x \in(-\infty,-2) \cup(-\sqrt{2}, \sqrt{2}) \cup(2, \infty)
\end{array}\right) \Longrightarrow f \text { increases here }, ~ \Longrightarrow f \text { decreases here }
$$

Hence, $x=-2$ and $x=\sqrt{2}$ are local maxima while $x=-\sqrt{2}$ and $x=2$ are local minima. The values are:

$$
f(2)=f(-2)=0, \quad f(\sqrt{2})=2, \quad f(-\sqrt{2})=-2 .
$$

The second derivative is:

$$
\begin{gathered}
f^{\prime \prime}(x)= \begin{cases}\frac{2 x\left(x^{2}-6\right)}{\left(4-x^{2}\right)^{3 / 2}}, & x \in(-2,2), \\
\frac{2 x\left(x^{2}-6\right)}{\left(x^{2}-4\right)^{3 / 2}}, & x \in(-\infty,-2) \cup(2, \infty) .\end{cases} \\
f^{\prime \prime}>0 \quad \text { if } x \in(-\sqrt{6},-2) \cup(-2,0) \cup(\sqrt{6}, \infty) \Longrightarrow f \text { convex here } \\
f^{\prime \prime}<0 \quad \text { if } x \in,(-\infty,-\sqrt{6}) \cup(0,2) \cup(2, \sqrt{6}) \Longrightarrow f \text { concave here }
\end{gathered}
$$

Inflection points are $x=-\sqrt{6}, x=0$ and $x=\sqrt{6}$, with values:

$$
f(0)=0, \quad f(\sqrt{6})=2 \sqrt{3}, \quad f(-\sqrt{6})=-2 \sqrt{3} .
$$

Problem 3 ($1+1=2$ points)

a) Compute the limit: $\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} \sin \left(\frac{\pi}{k}\right)}{\log n}$.
b) Study the convergence of the sequence defined by: $\quad a_{0}=1 / 2, \quad a_{n+1}=2+\frac{4}{a_{n}}$.

Hint: Observe that $a_{n}>2$ for $n \geq 1$.

Solution:

a) The denominator is increasing to ∞, so we can apply the Stolz criterion:

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} \sin \left(\frac{\pi}{k}\right)}{\log n}=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{\pi}{n}\right)}{\log \left(\frac{n}{n-1}\right)}=\lim _{n \rightarrow \infty} \frac{\pi \sin \left(\frac{\pi}{n}\right)}{\frac{\pi}{n} \log \left(\frac{n}{n-1}\right)^{n}}=\pi .
$$

b) We consider the function $f(x)=2+\frac{4}{x}$. The possible limit satisfies:

$$
L=f(L) \quad \Longrightarrow \quad L=2+\frac{4}{L} \quad \Longrightarrow \quad L=1 \pm \sqrt{5} .
$$

Since $L>0$ the possible limit is $L=1+\sqrt{5}$. Now we study if the sequence is convergent using the fixed point theorem: $f^{\prime}(x)=-\frac{4}{x^{2}}<0$, so the sequence is alternating. Also $f^{\prime}(x) \left\lvert\,=\frac{4}{x^{2}}<1\right.$ for $x>2$, which is the case of our sequence, so it is convergent and converges to $L=1+\sqrt{5}$.
To prove the hint, observe that:

$$
a_{0}=\frac{1}{2}>0 \quad \Longrightarrow \quad a_{n}>0 \quad \forall n \quad \Longrightarrow \quad a_{n+1}=2+\frac{4}{a_{n}}>2 \quad \forall n \geq 1 .
$$

Problem $4(1+1+1=3$ points)
a) Study the convergence of the series $\sum_{n=1}^{\infty} \frac{n(1+a)^{n}}{\mathrm{e}^{a n}}$ for different values of $a>-1$.
b) Sum and obtain the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{n}(2 n+1)!}$.
c) Obtain the Taylor series and the interval of convergence of $\quad f(x)=\log \left(\frac{1}{1+2 x}\right)+2 x$.

Solution:

a) $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\frac{1+a}{\mathrm{e}^{a}}<1$ for all $a>-1, a \neq 0 \Rightarrow C$; if $a=0$ the series is $\sum_{n=1}^{\infty} n=\infty$
b)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{n}(2 n+1)!}=\frac{\sqrt{2}}{x} \sum_{n=1}^{\infty} \frac{(-1)^{n}\left(\frac{x}{\sqrt{2}}\right)^{2 n+1}}{(2 n+1)!}=\frac{\sqrt{2}}{x}\left(\sin \left(\frac{x}{\sqrt{2}}\right)-\frac{x}{\sqrt{2}}\right)=\frac{\sqrt{2}}{x} \sin \left(\frac{x}{\sqrt{2}}\right)-1
$$

The series converges on \mathbb{R} because the series of the sine converges on \mathbb{R}.
c) Observe that $f(x)=-\log (1+2 x)+2 x$, so we use the series of the logarithm:

$$
-\log (1+2 x)+2 x=-\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2 x)^{n}}{n}+2 x=2 x+\sum_{n=1}^{\infty} \frac{(-2 x)^{n}}{n}=\sum_{n=2}^{\infty} \frac{(-2 x)^{n}}{n}
$$

This series is convergent for $2 x \in(-1,1]$, that is, it converges for $x \in\left(-\frac{1}{2}, \frac{1}{2}\right]$.

Open Course Ware, UC3M

