uc3m Universidad Carlos III de Madrid
 Departamento de Matemáticas

DIFFERENTIAL CALCULUS
 EXTRAORDINARY EXAM

Degree in Applied Mathematics and Computation

Time: 3 hours

Problem 1 ($1+1+1=3$ points)
a) Calculate the domain of the function $f(x)=\arcsin \left(\frac{x}{x^{2}+1}\right)$,
b) Find the minimum value k such that f is injective on $[k, \infty)$ and obtain the inverse function on that interval.
c) Prove that

$$
\arctan \left(\frac{1+x}{1-x}\right)-\arctan (x)=\frac{\pi}{4}, \quad x<1 .
$$

Problem 2 (2 points)

Plot the function $f(x)=x \sqrt{\left|x^{2}-4\right|}$, with all the calculations.
Problem $3(1+1=2$ points $)$
a) Compute the limit: $\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} \sin \left(\frac{\pi}{k}\right)}{\log n}$.
b) Study the convergence of the sequence defined by: $\quad a_{0}=1 / 2, \quad a_{n+1}=2+\frac{4}{a_{n}}$.

Hint: Observe that $a_{n}>2$ for $n \geq 1$.

Problem $4(1+1+1=3$ points)
a) Study the convergence of the series $\sum_{n=1}^{\infty} \frac{n(1+a)^{n}}{\mathrm{e}^{a n}}$ for different values of $a>-1$.
b) Sum and obtain the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{n}(2 n+1)!}$.
c) Obtain the Taylor series and the interval of convergence of $\quad f(x)=\log \left(\frac{1}{1+2 x}\right)+2 x$.

