uc3m Universidad Carlos III de Madrid
 Departamento de Matemáticas

DIFFERENTIAL CALCULUS
 FINAL EXAM - SOLUTIONS

Degree in Applied Mathematics and Computation

Time: 3 hours

Problem 1 (1,5 points)

Minimize the function $f(x)=\frac{x^{p}}{p}-b x$ for $x \in(0, \infty)$ and prove the following inequality:

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}, \quad \text { where } \quad a, b>0, \quad p, q>1, \quad \frac{1}{p}+\frac{1}{q}=1 .
$$

Solution:
$f^{\prime}(x)=x^{p-1}-b=0 \Longrightarrow x=b^{1 /(p-1)}, f^{\prime}$ is positive for $x>b^{1 /(p-1)}$ and negative for $0<x<$ $b^{1 /(p-1)}$, so $x=b^{1 /(p-1)}$ is an absolute minimum in $(0, \infty)$, so for any $0<a$:

$$
f(a)=\frac{a^{p}}{p}-b a \geq \frac{b^{p /(p-1)}}{p}-b b^{1 /(p-1)}=-\frac{1}{q} b^{q} \Longrightarrow \frac{a^{p}}{p}+\frac{b^{q}}{q} \geq a b .
$$

Problem $2(2+1=3$ points)

a) Plot the graph of this function, studying the derivative at the left of 0 , but without $f^{\prime \prime}$.

$$
f(x)=\frac{\mathrm{e}^{1 / x}}{1+x}, \quad x \neq 0 ; \quad f(0)=0
$$

b) Study in a reasoned way how many solutions the equation $\frac{\mathrm{e}^{1 / x}}{1+x}=x^{3}$ has in \mathbb{R}.

Solution:
a) $\operatorname{Dom}(f)=\mathbb{R} \backslash\{-1\}$, and there are no symmetries. We look for asymptotes:

$$
\lim _{x \rightarrow \infty} \frac{\mathrm{e}^{1 / x}}{1+x}=0^{+}, \quad \lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{1 / x}}{1+x}=0^{-}
$$

thus, $y=0$ is a horizontal asymptote for $x \rightarrow \pm \infty$. Also:

$$
\begin{array}{ll}
\lim _{x \rightarrow 0^{+}} \frac{\mathrm{e}^{1 / x}}{1+x}=\infty, & \lim _{x \rightarrow 0^{-}} \frac{\mathrm{e}^{1 / x}}{1+x}=0=f(0), \\
\lim _{x \rightarrow-1^{+}} \frac{\mathrm{e}^{1 / x}}{1+x}=\infty, & \lim _{x \rightarrow-1^{-}} \frac{\mathrm{e}^{1 / x}}{1+x}=-\infty .
\end{array}
$$

Then, there is a vertical asymptote at $x=-1$ from the two sides and another vertical asymptote at $x=0$ from the right hand side.
The derivative satisfies:

$$
f^{\prime}(x)=\frac{\mathrm{e}^{1 / x}\left[\frac{(-1)}{x^{2}}(1+x)-1\right]}{(1+x)^{2}}=\frac{-\mathrm{e}^{1 / x}\left(1+x+x^{2}\right)}{x^{2}(1+x)^{2}}=0 \Longrightarrow x=\frac{-1 \pm \sqrt{-3}}{2},
$$

so there are no critical points. $f^{\prime}<0$ on $\mathbb{R} \backslash\{0,-1\}$, and thus f is decreasing on each interval $(-\infty,-1) \cup(-1,0) \cup(0, \infty)$.
At the left of zero the derivative is:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{-\mathrm{e}^{1 / x}\left(1+x+x^{2}\right)}{x^{2}(1+x)^{2}}=\lim _{x \rightarrow 0^{-}} \frac{-\mathrm{e}^{1 / x}}{x^{2}}=\lim _{t \rightarrow-\infty}\left(-t^{2} \mathrm{e}^{t}\right)=\lim _{t \rightarrow-\infty} \frac{\left(-t^{2}\right)}{\mathrm{e}^{-t}} \\
& \quad=\lim _{t \rightarrow-\infty} \frac{2 t}{\mathrm{e}^{-t}}=\lim _{t \rightarrow-\infty} \frac{2}{-\mathrm{e}^{-t}}=0^{-} .
\end{aligned}
$$

with the change: $1 / x=t, x \rightarrow 0^{-} \Longrightarrow t \rightarrow-\infty$, and the use of L'Hôpital twice.
With these data, the function will be convex on $(-1,0) \cup(0, \infty)$ and concave on $(-\infty,-1)$.

b) There are three solutions of the equation: one is $x=0$. Let us consider the function $g(x)=f(x)-x^{3}$, that is continuous on $(-\infty,-1) \bigcup(-1,0) \bigcup(0, \infty)$. On $(-\infty,-1)$, observe that

$$
\lim _{x \rightarrow-\infty}\left(\frac{\mathrm{e}^{1 / x}}{1+x}-x^{3}\right)=\infty \quad \text { and } \quad \lim _{x \rightarrow-1^{-}}\left(\frac{\mathrm{e}^{1 / x}}{1+x}-x^{3}\right)=-\infty
$$

so, there exist two points $x_{1}<x_{2} \in(-\infty,-1)$ such that $g\left(x_{1}\right)>0>g\left(x_{2}\right)$, and by the Bolzano theorem we know that there exists at least a root on $(-\infty,-1)$. Even more, since both $\frac{\mathrm{e}^{1 / x}}{1+x}$ and $-x^{3}$ increase on that interval, then $g(x)$ increases, the root is unique. The third root is in $(0, \infty)$:

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{\mathrm{e}^{1 / x}}{1+x}-x^{3}\right)=\infty, \quad \text { and } \quad \lim _{x \rightarrow \infty}\left(\frac{\mathrm{e}^{1 / x}}{1+x}-x^{3}\right)=-\infty
$$

hence, using the same argument as before, by Bolzano's theorem we know that there is at least one root here and it is unique because also here $g(x)$ is decreasing.
There are no roots on $(-1,0)$, because $f(x)>0$ and $x^{3}<0$ there. In the picture you see $f(x)$ together with x^{3}.

Problem 3 (1 point)

Calculate the Taylor polynomial of degree 3 at the origin of $f(x)=\sin (2 x)-\mathrm{e}^{2 x} \quad$ and a bound of the error when we approximate at $x=1 / 2$ the function by the polynomial.

Solution:

We use the Taylor polynomials of degree 3 at the origin of the two functions:

$$
P_{3,0} f(x)=2 x-\frac{(2 x)^{3}}{3!}-1-2 x-\frac{(2 x)^{2}}{2}-\frac{(2 x)^{3}}{3!}=-1-2 x^{2}-\frac{8 x^{3}}{3} .
$$

To estimate the error at $x=1 / 2$ we use Lagrange's formula for the remainder of the Taylor polynomial:

$$
R_{3,0} f\left(\frac{1}{2}\right)=\frac{f^{I V)}(t)}{4!}\left(\frac{1}{2}\right)^{4}=\frac{16\left(\sin (2 t)-\mathrm{e}^{2 t}\right)}{4!}\left(\frac{1}{2}\right)^{4}=\frac{\sin (2 t)-\mathrm{e}^{2 t}}{4!}
$$

where $t \in(0,1 / 2)$, so we have the bound:

$$
\left|R_{3,0} f\left(\frac{1}{2}\right)\right| \leq \frac{1+\mathrm{e}}{4!}
$$

Problem $4(1+1,5=2.5$ points)

a) Compute the limit: $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k^{2}}{n^{2}} \sin \frac{1}{k}$.
b) Study the convergence of the sequence defined by: $\quad a_{n+1}=\frac{a_{n}^{3}+5}{6}, \quad a_{0}=1 / 2$.

Solution:
a) We write this as a quotient and use Stolz criterion. We can since the denominator n^{2}, is an increasing sequence with limit ∞ :

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k^{2}}{n^{2}} \sin \frac{1}{k}=\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} k^{2} \sin \frac{1}{k}}{n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2} \sin (1 / n)}{n^{2}-(n-1)^{2}}=\frac{1}{2} .
$$

b) We have $a_{n+1}=f\left(a_{n}\right)$ with $f(x)=\frac{x^{3}+5}{6}$. The derivative is $f^{\prime}(x)=\frac{x^{2}}{2}>0$, so the sequence is monotonous. Besides:

$$
a_{0}=\frac{1}{2}, \quad a_{1}=\frac{41}{48}>\frac{1}{2},
$$

so, the sequence is increasing. If there is a limit it must satisfy:

$$
x=\frac{x^{3}+5}{6} \quad \Longrightarrow \quad x^{3}-6 x+5=0 \quad \Longrightarrow \quad x=1, \quad x=\frac{-1}{2} \pm \frac{\sqrt{21}}{2} .
$$

Observe that $\frac{\sqrt{21}}{2} \sim 2.29$, so the three possible limits are $x=1, x \sim 1,79$ and $x \sim-2,79$. Since $a_{0}<1, a_{1}<1$ we use induction to prove that all the sequence is bounded above by 1. If $a_{n}<1$, then:

$$
a_{n+1}=\frac{a_{n}^{3}+5}{6}<\frac{1+5}{6}=1 .
$$

Then, the sequence converges to 1 , because it is increasing and it is bounded above by 1 .

Problem $5(0,5+0,5+1=2$ points $)$
a) Study the convergence of the series $\sum_{n=1}^{\infty}(-1)^{n} \tan \left(\frac{1}{\sqrt{n}}\right)$.
b) Sum and obtain the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{n} n!}$.
b) Obtain the Taylor series and the interval of convergence of $\quad f(x)=\ln \left(\frac{1}{1-2 x}\right)-2 x$.

Solution:

a) This is an alternating series. We study the absolute convergence comparing with the $\frac{1}{2}$-harmonic series. We compute the limit:

$$
\lim _{n \rightarrow \infty} \frac{\tan \left(\frac{1}{\sqrt{n}}\right)}{\frac{1}{\sqrt{n}}}=\lim _{t \rightarrow 0^{+}} \frac{\tan t}{t}=\lim _{t \rightarrow 0^{+}} \frac{1}{\cos ^{2} t}=1,
$$

with the change $\frac{1}{\sqrt{n}}=t$ and using L'Hôpital. Then, both series have the same character, that is, both diverge. So our series does not converge absolutely. Now we study the conditional convergence. Since:

$$
\lim _{n \rightarrow \infty} \tan \left(\frac{1}{\sqrt{n}}\right)=0
$$

and it is decreasing because the derivative of $f(x)=\tan \left(\frac{1}{\sqrt{x}}\right)$ is negative:

$$
f^{\prime}(x)=\left(1+\tan ^{2}\left(\frac{1}{\sqrt{n}}\right)\right) \frac{(-1 / 2)}{n^{3 / 2}}<0 .
$$

So, by Leibniz criterion, the series converges conditionally.
b) This series is related to the exponential:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{n} n!}=\sum_{n=1}^{\infty}\left(\frac{-x^{2}}{2}\right)^{n} \frac{1}{n!}=\mathrm{e}^{-x^{2} / 2}-1
$$

The series converges on \mathbf{R}, because the exponential is convergent on \mathbf{R}.
b) Observe that $f(x)=-\ln (1-2 x)-2 x$, so we use the series of the logarithm:

$$
-\ln (1-2 x)-2 x=-\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(-2 x)^{n}}{n}-2 x=-2 x+\sum_{n=1}^{\infty} \frac{(2 x)^{n}}{n}=\sum_{n=2}^{\infty} \frac{(2 x)^{n}}{n}
$$

This series is convergent for $2 x \in[-1,1)$, that is, it converges for $x \in\left[-\frac{1}{2}, \frac{1}{2}\right)$.

