
DIFFERENTIAL CALCULUS
FINAL EXAM - SOLUTIONS

Degree in Applied Mathematics and Computation

Time: 3 hours

Problem 1 (1,5 points)

Minimize the function f(x) =
xp

p
− bx for x ∈ (0,∞) and prove the following inequality:

ab ≤ ap

p
+

bq

q
, where a, b > 0, p, q > 1,

1

p
+

1

q
= 1.

Solution:
f ′(x) = xp−1 − b = 0 =⇒ x = b1/(p−1), f ′ is positive for x > b1/(p−1) and negative for 0 < x <
b1/(p−1), so x = b1/(p−1) is an absolute minimum in (0,∞), so for any 0 < a:

f(a) =
ap

p
− ba ≥ bp/(p−1)

p
− bb1/(p−1) = −1

q
bq =⇒ ap

p
+

bq

q
≥ ab.

Problem 2 (2 + 1 = 3 points)

a) Plot the graph of this function, studying the derivative at the left of 0, but without f ′′.

f(x) =
e1/x

1 + x
, x ̸= 0; f(0) = 0,

b) Study in a reasoned way how many solutions the equation
e1/x

1 + x
= x3 has in R.

Solution:

a) Dom(f) = R \ {−1}, and there are no symmetries. We look for asymptotes:

lim
x→∞

e1/x

1 + x
= 0+, lim

x→−∞

e1/x

1 + x
= 0−,

thus, y = 0 is a horizontal asymptote for x → ±∞. Also:

lim
x→0+

e1/x

1 + x
= ∞, lim

x→0−

e1/x

1 + x
= 0 = f(0),

lim
x→−1+

e1/x

1 + x
= ∞, lim

x→−1−

e1/x

1 + x
= −∞.

Then, there is a vertical asymptote at x = −1 from the two sides and another vertical
asymptote at x = 0 from the right hand side.

The derivative satisfies:

f ′(x) =
e1/x[ (−1)

x2 (1 + x)− 1]

(1 + x)2
=

−e1/x(1 + x+ x2)

x2(1 + x)2
= 0 =⇒ x =

−1±
√
−3

2
,

1



so there are no critical points. f ′ < 0 on R \ {0,−1}, and thus f is decreasing on each
interval (−∞,−1) ∪ (−1, 0) ∪ (0,∞).

At the left of zero the derivative is:

lim
x→0−

−e1/x(1 + x+ x2)

x2(1 + x)2
= lim

x→0−

−e1/x

x2
= lim

t→−∞
(−t2et) = lim

t→−∞

(−t2)

e−t

= lim
t→−∞

2t

e−t
= lim

t→−∞

2

−e−t
= 0−.

with the change: 1/x = t, x → 0− =⇒ t → −∞, and the use of L’Hôpital twice.

With these data, the function will be convex on (−1, 0)∪(0,∞) and concave on (−∞,−1).
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b) There are three solutions of the equation: one is x = 0. Let us consider the function
g(x) = f(x)−x3, that is continuous on (−∞,−1)

⋃
(−1, 0)

⋃
(0,∞). On (−∞,−1), observe

that

lim
x→−∞

(
e1/x

1 + x
− x3

)
= ∞ and lim

x→−1−

(
e1/x

1 + x
− x3

)
= −∞,

so, there exist two points x1 < x2 ∈ (−∞,−1) such that g(x1) > 0 > g(x2), and by the
Bolzano theorem we know that there exists at least a root on (−∞,−1). Even more, since

both
e1/x

1 + x
and −x3 increase on that interval, then g(x) increases, the root is unique.

The third root is in (0,∞):

lim
x→0+

(
e1/x

1 + x
− x3

)
= ∞, and lim

x→∞

(
e1/x

1 + x
− x3

)
= −∞,

hence, using the same argument as before, by Bolzano’s theorem we know that there is at
least one root here and it is unique because also here g(x) is decreasing.

There are no roots on (−1, 0), because f(x) > 0 and x3 < 0 there. In the picture you see
f(x) together with x3.

Problem 3 (1 point)
Calculate the Taylor polynomial of degree 3 at the origin of f(x) = sin(2x) − e2x and a
bound of the error when we approximate at x = 1/2 the function by the polynomial.

Solution:
We use the Taylor polynomials of degree 3 at the origin of the two functions:

P3,0f(x) = 2x− (2x)3

3!
− 1− 2x− (2x)2

2
− (2x)3

3!
= −1− 2x2 − 8x3

3
.

2



To estimate the error at x = 1/2 we use Lagrange’s formula for the remainder of the Taylor
polynomial:

R3,0f

(
1

2

)
=

f IV )(t)

4!

(
1

2

)4

=
16(sin(2t)− e2t)

4!

(
1

2

)4

=
sin(2t)− e2t

4!
,

where t ∈ (0, 1/2), so we have the bound:∣∣∣∣R3,0f

(
1

2

)∣∣∣∣ ≤ 1 + e

4!
.

Problem 4 (1 + 1,5 = 2.5 points)

a) Compute the limit: lim
n→∞

n∑
k=1

k2

n2
sin

1

k
.

b) Study the convergence of the sequence defined by: an+1 =
a3n + 5

6
, a0 = 1/2.

Solution:

a) We write this as a quotient and use Stolz criterion. We can since the denominator n2, is
an increasing sequence with limit ∞:

lim
n→∞

n∑
k=1

k2

n2
sin

1

k
= lim

n→∞

n∑
k=1

k2 sin
1

k

n2
= lim

n→∞

n2 sin(1/n)

n2 − (n− 1)2
=

1

2
.

b) We have an+1 = f(an) with f(x) =
x3 + 5

6
. The derivative is f ′(x) =

x2

2
> 0, so the

sequence is monotonous. Besides:

a0 =
1

2
, a1 =

41

48
>

1

2
,

so, the sequence is increasing. If there is a limit it must satisfy:

x =
x3 + 5

6
=⇒ x3 − 6x+ 5 = 0 =⇒ x = 1, x =

−1

2
±

√
21

2
.

Observe that

√
21

2
∼ 2.29, so the three possible limits are x = 1, x ∼ 1, 79 and x ∼ −2, 79.

Since a0 < 1, a1 < 1 we use induction to prove that all the sequence is bounded above by
1. If an < 1, then:

an+1 =
a3n + 5

6
<

1 + 5

6
= 1.

Then, the sequence converges to 1, because it is increasing and it is bounded above by 1.
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Problem 5 (0,5 + 0,5 + 1 = 2 points)

a) Study the convergence of the series

∞∑
n=1

(−1)n tan

(
1√
n

)
.

b) Sum and obtain the interval of convergence of the series

∞∑
n=1

(−1)nx2n

2nn!
.

b) Obtain the Taylor series and the interval of convergence of f(x) = ln

(
1

1− 2x

)
− 2x.

Solution:

a) This is an alternating series. We study the absolute convergence comparing with the
1
2 -harmonic series. We compute the limit:

lim
n→∞

tan
(

1√
n

)
1√
n

= lim
t→0+

tan t

t
= lim

t→0+

1

cos2 t
= 1,

with the change 1√
n
= t and using L’Hôpital. Then, both series have the same character,

that is, both diverge. So our series does not converge absolutely. Now we study the
conditional convergence. Since:

lim
n→∞

tan

(
1√
n

)
= 0,

and it is decreasing because the derivative of f(x) = tan
(

1√
x

)
is negative:

f ′(x) =

(
1 + tan2

(
1√
n

))
(−1/2)

n3/2
< 0.

So, by Leibniz criterion, the series converges conditionally.

b) This series is related to the exponential:

∞∑
n=1

(−1)nx2n

2nn!
=

∞∑
n=1

(
−x2

2

)n
1

n!
= e−x2/2 − 1.

The series converges on R, because the exponential is convergent on R.

b) Observe that f(x) = − ln(1− 2x)− 2x, so we use the series of the logarithm:

− ln(1− 2x)− 2x = −
∞∑
n=1

(−1)n+1(−2x)n

n
− 2x = −2x+

∞∑
n=1

(2x)n

n
=

∞∑
n=2

(2x)n

n
.

This series is convergent for 2x ∈ [−1, 1), that is, it converges for x ∈ [−1
2 ,

1
2).
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