uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

DIFFERENTIAL CALCULUS FINAL EXAM

Degree in Applied Mathematics and Computation

Time: 3 hours

Problem 1 (1,5 points)

Minimize the function $f(x) = \frac{x^p}{p} - bx$ for $x \in (0, \infty)$ and prove the following inequality: $a^p = b^q$

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$
, where $a, b > 0$, $p, q > 1$, $\frac{1}{p} + \frac{1}{q} = 1$.

Problem 2 (2 + 1 = 3 points)

a) Plot the graph of this function, studying the derivative at the left of 0, but without f''.

$$f(x) = \frac{e^{1/x}}{1+x}, \qquad x \neq 0; \qquad f(0) = 0,$$

b) Study in a reasoned way how many solutions the equation $\frac{e^{1/x}}{1+x} = x^3$ has in \mathbb{R} .

Problem 3 (1 point)

Calculate the Taylor polynomial of degree 3 at the origin of $f(x) = \sin(2x) - e^{2x}$ and a bound of the error when we approximate at x = 1/2 the function by the polynomial.

Problem 4 (1 + 1,5 = 2.5 points)

- a) Compute the limit: $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^2}{n^2} \sin \frac{1}{k}$.
- b) Study the convergence of the sequence defined by: $a_{n+1} = \frac{a_n^3 + 5}{6}, a_0 = 1/2.$

Problem 5 (0,5 + 0,5 + 1 = 2 points)

a) Study the convergence of the series $\sum_{n=1}^{\infty}$

$$\sum_{n=1}^{\infty} (-1)^n \tan\left(\frac{1}{\sqrt{n}}\right).$$

nce of the series
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2^n n!}.$$

- b) Sum and obtain the interval of convergence of the series
- b) Obtain the Taylor series and the interval of convergence of $f(x) = \ln\left(\frac{1}{1-2x}\right) 2x$.

Open Course Ware, UC3M

Elena Romera

