uc3m Universidad Carlos III de Madrid
 Departamento de Matemáticas

DIFFERENTIAL CALCULUS

FINAL EXAM
Degree in Applied Mathematics and Computation

Time: 3 hours

Problem 1 (1,5 points)

Minimize the function $f(x)=\frac{x^{p}}{p}-b x$ for $x \in(0, \infty)$ and prove the following inequality:

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}, \quad \text { where } \quad a, b>0, \quad p, q>1, \quad \frac{1}{p}+\frac{1}{q}=1 .
$$

Problem $2(2+1=3$ points)
a) Plot the graph of this function, studying the derivative at the left of 0 , but without $f^{\prime \prime}$.

$$
f(x)=\frac{\mathrm{e}^{1 / x}}{1+x}, \quad x \neq 0 ; \quad f(0)=0
$$

b) Study in a reasoned way how many solutions the equation $\frac{\mathrm{e}^{1 / x}}{1+x}=x^{3}$ has in \mathbb{R}.

Problem 3 (1 point)
Calculate the Taylor polynomial of degree 3 at the origin of $f(x)=\sin (2 x)-\mathrm{e}^{2 x} \quad$ and a bound of the error when we approximate at $x=1 / 2$ the function by the polynomial.

Problem $4(1+1,5=2.5$ points)
a) Compute the limit: $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k^{2}}{n^{2}} \sin \frac{1}{k}$.
b) Study the convergence of the sequence defined by: $\quad a_{n+1}=\frac{a_{n}^{3}+5}{6}, \quad a_{0}=1 / 2$.

Problem $5(0,5+0,5+1=2$ points $)$

a) Study the convergence of the series $\sum_{n=1}^{\infty}(-1)^{n} \tan \left(\frac{1}{\sqrt{n}}\right)$.
b) Sum and obtain the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{n} n!}$.
b) Obtain the Taylor series and the interval of convergence of $\quad f(x)=\ln \left(\frac{1}{1-2 x}\right)-2 x$.

