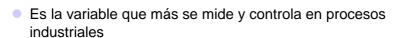

Ingeniería Técnica Industrial Electrónica Industrial

Instrumentación Electrónica I Tema 5: Medida de temperatura

Departamento Tecnología Electrónica Carlos III University Madrid (Spain)

emario			
TEMARIO	HTE	P	HL
TEMA 1. INTRODUCCIÓN	1 H		
TEMA 2. SENSORES Y TRANSDUCTORES	1 H	T	
TEMA 3. CARACTERÍSTICAS ESTÁTICAS DE UN TRANSDUCTOR	2 H	Т	
TEMA 4. ACONDICIONAMIENTO DE LA SEÑAL DE SALIDA DE UN TRANSDUCTOR	7 H	T	
TEMA 5. TRANSDUCTORES PARA LA MEDIDA DE TEMPERATURA.	5 H	1	3 H
TEMA 6. SENSORES PARA LA MEDIDA DE DEFORMACIONES	5H	2	3 H
TEMA 7. SENSORES DE POSICIÓN Y NIVEL	5 H	3	3 H
TEMA 8. SENSORES ÓPTICOS	6 H		
TOTAL	32 H		9 H


Medida de Temperaturas

- Introducción
- Escala de Temperaturas (absolutas, EIPT)
- Medición T por efectos mecánicos
- Termómetros de resistencia
- Termometría con Circuitos Integrados
- Termopares

Introducción

- En procesos de fabricación se necesita fijar T muy exacta
- Definición : intuitiva, principios Termodinámica
- Medida a través de los efectos primarios que ocasiona ΔT:
 - O Cambio estado físico o químico (puntos fijos calibración)
 - Cambio en las dimensiones físicas (termómetros)
 - O Variación de las propiedades eléctricas
 - O Generación f.e.m. unión de metales distintos
 - Cambio intensidad de radiación (Pirometría, cuerpo negro, T altas)

Instrumentación Electrónica

Escalas de Temperaturas

- Necesidad: poder medir igualando T con referencia escala
- a.Ligadas propiedades de un cuerpo específico (arbitrarias)
- b.A partir Leyes Termodinámica (gases perfectos o teorema de Carnot). Escalas:
 - Kelvin
 - Rankine
- Kelvin: unidad Kelvin (K) se obtiene al fijar la T triple del agua (fácilmente reproducible) = 273,16 °K
- Rankine: grado Rankine. T punto triple agua = 459,67 °R
- Conversión (°K)=(5/9)(°R)

Escalas derivadas de Esc. Termodinámicas

- Por traslación: valores de escalas no absolutas
 - Escala Celsius: T(°C)=T(°K)-273,16
 - Escala Fahrenheit: T(°F)=T(°R)-459,67
- Conversión:
 - \circ T(°C)=(5/9)[T(°F)-32]
 - \circ T(°F)= (9/5)[T(°C)+32]
- Escala Internacional Práctica de **Temperaturas** (EIPT) basada en efectos primarios T. Evitar los problemas de trabajar con termómetros de gases (permiten la medida de T absolutas) pero son muy delicados: dilatación (RTD), termopares, radiación cuerpo negro

Resumen escalas T

- Definición teórica escalas temperatura
- Escalas absolutas

Rankine

Kelvin

Pto triple agua

Pto triple agua

T = 459,67 °R

T = 273,16 °K

Escalas relativas (traslación)

Farenheit

Celsius

T (° F)= T (°R)- 459,67 (°K)-273,16

T (° C)= T

- Medida práctica de temperatura
- Escalas Internacionales Prácticas T (EIPT):
- Termómetro de resistencia de platino
- Termopar Pt Rd 10% /Pt
- Radiación del cuerpo negro

(medidas basadas en efectos primarios: dilatación, termopar, radiación emitida..)

Entre dos puntos cualesquiera la temperatura se deduce por interpolación

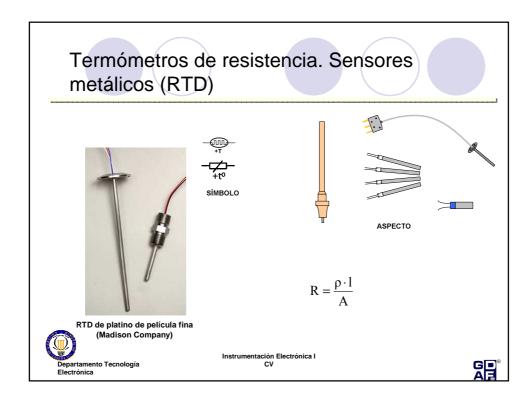
Departamento Tecnología Electrónica

Medida de T efectos mecánicos

- Cambio de las dimensiones mecánicas por efecto T
- Termómetro de vidrio o de expansión de líquido:
 - O Alcohol (-110°C a +50°C). T bajas
 - Mercurio (-35°C a +538°C). T altas (a −39°C fusión Hg)
- Principio medida: aumento Ţlíquido bulbo se dilata y asciende por el capilar (escala) mide T
- Posible error: dilatación líquido y del vidrio, evitarlo se realiza una calibración en inmersión
- Otro efecto: termómetro bimetálico. Los diferentes coeficientes de dilatación de 2 metales distintos provoca una flexión del conjunto proporcional a T.

Instrumentación Electrónica I

Termómetros de resistencia


Resistencia: Elemento sensor depende T

- Sensores T resistivos
- Metálicos: platino, níquel o aleacción
- Coef. Resistividad positivo
- Constante tiempo elevada: 1 a 5 seg

- Termistores
- Material semiconductor: óxido de manganeso, de niquel o de cobre, germanio o silicio
- Coeficiente de T:
 - Negativo (NTC), más común
 - Positivo (PTC)

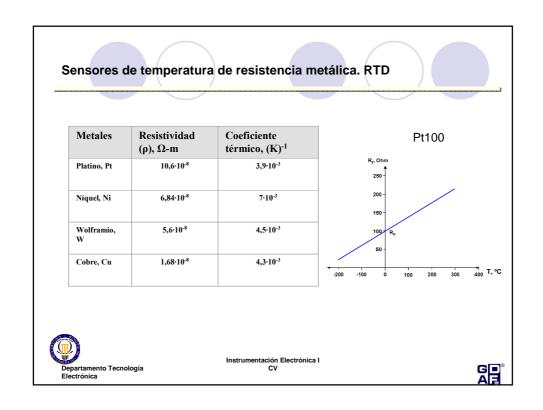
Departamento Tecnología Electrónica

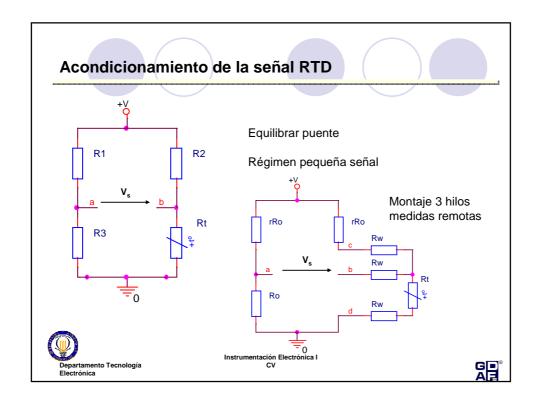
Termómetros de resistencia. Sensores metálicos (RTD)

- Funcionamiento: resistencia metal función de T
- Requisitos:
 - Lineal: $R(T)=Ro(1+\alpha(T-To))$, α : coef.temperatura; Ro=R(To) (aprox)
 - O Coef. Temperatura alto (sensibilidad alta) y estable
 - O Resistividad elevada, evitar efecto cables y reducir las dimensiones
 - Estabilidad y resistencia ante agresiones químicas
- Sólo 3 metales cumplen lo anterior: Platino, Cobre, Níquel
- Platino (Pt), mejores características EIPT 68

R(t)=Ro(1+αΔT+βΔT²+γΔΤ³); α=3,9 10⁻³ /° C, β=-5,8 10⁻⁷ /° C², γ=-4,3 10⁻¹² /° C³

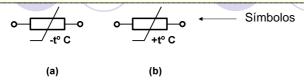
Ro (resistencia a 0 °C) típicamente 100Ω Disponibles comercialmente 10,50,200,400,500


Inconvenientes: precio, α baja, ρ baja pero mejor que los otros


Ventajas: pto. fusión elevado, bastante lineal, fácilmente refinable (Ni no)

Aleaciones abaratar costes.

Errores medida con RTD


- Efecto hilos unión (deriva de cero puente Wheastone, evitar montajes a 3 hilos y reequilibrar)
- Estabilidad
- Autocalentamiento
 - Limitar la corriente máxima circula RTD. Se limita la potencia máxima que disipa<2mW. <u>Limita el error en la medida de temperatura (Δt)</u>
 - t-t_a=∆t=R_⊕ I²R_T; R_⊕(°C/W) resistencia térmica de la RTD con el medio, I corriente efectiva circula RTD
- Posible sensibilidad RTD a deformaciones (despreciable 1000 $\mu\epsilon$ implican ΔT orden 1.7 °C, normalmente sometida a 1 $\mu\epsilon$)

Instrumentación Electrónica I

Termistores

Posibles configuraciones:

Gota Disco

Basados en materiales semiconductores

Funcionamiento: resistencia óxidos metálicos semiconductores función de T

NTC: Negative Temperature Coefficient PTC: Positive Temperature Coefficient

Termómetros de resistencia. Termistores

- Características:
 - No Lineal: R(T)=Ro (e $\beta(1/T-1/To)$), β (en K) y Ro=R(To) dependen material,
 - β varía de 2000 K a 6000 K
 - Sensibilidades térmicas muy superiores a sensores metálicos

 - Sensibilidad normalizada S_n =(ΔR/Ro)/ΔT=-β/T² S_n =-0,045/K con β=4000 K a T=298 K frente S_n =0,0036/K de Pt100 (10 veces menor)
 - \odot Resistencia a T ambiente elevada: 100 Ω a 100K Ω
 - O Menor rango de operación de -70 a 500°C
 - Se obtienen variaciones grandes, fácilmente medibles
 - O Dispersión valores Ro misma serie (calibración necesaria para precisión)
- PTC tienen pendientes de variación, Sn mayores pero son más inestables y menos repetitivas
- Son más baratas que los sensores metálicos
- Errores medida equivalentes RTD salvo problema hilos no afecta

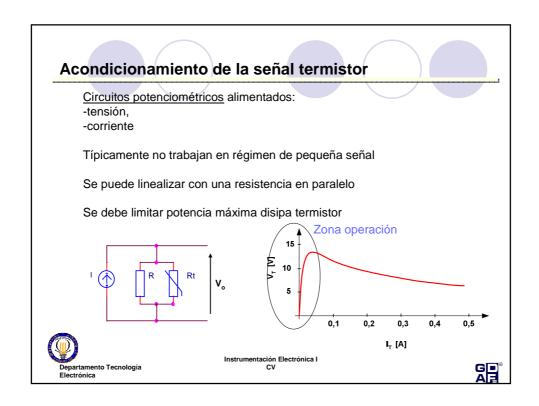
Linealización sensores resistivos

- Colocando Resistencia en paralelo Rf con R_T (sensor)
- Función Rp (T) = R_T II Rf variación cuasi-lineal con T. Tenga un punto de inflexión alrededor de la T entorno cual se busca un comportamiento lineal
- d^2Rp/dT^2 (T=Ti) =0
- $Rf=(2R'_{T}^{2})/R''_{T}-R_{T}$

Ejercicio. Calcular el valor de Rf para

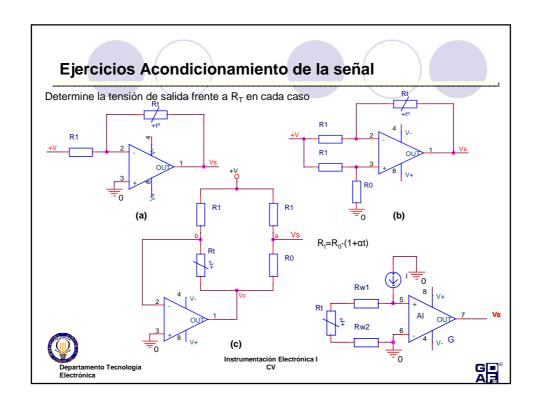
- Pt100 (α = 3,9 10⁻³/ °C , β = -5,8 10⁻⁷ /°C²)
- Ni con Ro=50Ω a 25°C, (α = 6,8 10⁻³/ °C, β = 6,7 10⁻⁶ /°C²)

Departamento Tecnología Electrónica



Disipación potencia

- Al circular corriente se genera energía térmica por efecto Joule que parte se disipa y parte absorbe el termistor aumentando su temperatura, Ts, sobre la ambiente, Ta que se desea medir (posible fuente de error):
 - ∆T= Ts-Ta error en la medida
- Pasado un tiempo se alcanza el equilibrio térmico y toda la potencia cedida al termistor se cede al ambiente:
 - \bigcirc P = V_T x I_T=R x I_T²= δ (Ts-Ta)
 - O δ Coeficiente de disipación del termistor (mW/K)
 - O Limita la precisión de la medida



Ejemplos. Hojas de características

- http://physics.syr.edu/courses/PHY351.05Spring/thermistor-specs.pdf
- <u>http://www.uib.es/depart/dfs/GTE/educatio</u> <u>n/industrial/ins_electronica_I/NTC-RS.pdf</u>

Termómetros CI. Silicio

- Principio de funcionamiento: dependencia con la T de la caída tensión unión PN directa (V_D).
- O Diodo = transistor unión BC cortocircuitada $I=I_o(e^{qV_D/KT}-1)$ luego $V_D=KT/q$ (L(I+I $_o$)/I $_o$) si I cte y I>>I $_o$ $V_D(T)$ lineal con T, Sensibilidad -2,5mV/ o K

Ejemplo: serie MTS Motorola, $\Delta V/\Delta T$ (Sensibilidad) -2,25mV/ $^{\circ}K$

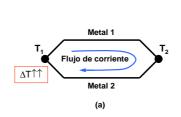
Evitar el efecto $I_o(T)$ se realizan montajes con CI con transistores apareados en el mismo sustrato: $I_1=I_o(e^{qV_1/kT_-1})$ luego $V_1=KT/q$ ($L(I_1/I_o)$) $I_2=I_o(e^{qV_2/kT_-1})$ luego $V_2=KT/q$ ($L(I_2/I_o)$); I_1 , $I_2>>I_o$

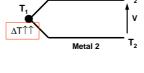
 $\label{eq:Vd} V_d = V_1 - V_2 = KT/q \; L(I_1/I_2) \quad ; \; I_1 = 2 \; I_2 \; se \; obtiene \; \; V_d \, (\mu V) = 59,73 \; T \; (^0K) \; \; Lineal \; con \; T \; (^1/2) \; .$

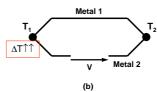
Ejemplos:

LM335 CI 10mV/ºK

AD590 1µA/°K rango: -55 a +150 °C, lineal, bajo coste (Ejercicio: obtener parámetros no linealidad, error... hoja de características)

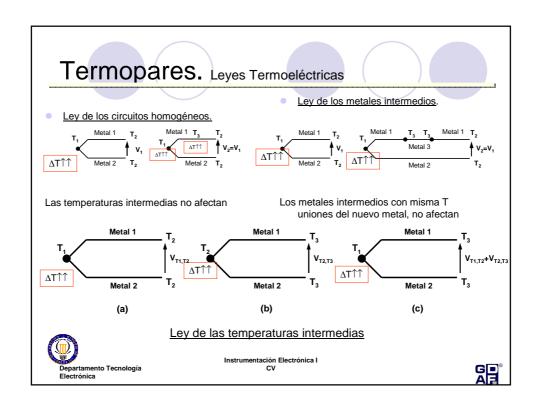



Instrumentación Electrónica CV



Termopares. Principio de funcionamiento

- Sensor T formado por 2 hillos metálicos diferentes puestos en contacto térmico; produce una tensión proporcional a la diferencia de temperatura entre los puntos de unión de ambos metales. Basado efecto Seebeck, Peltier y Thomson.
- Efecto Seebeck.



 $V=a(T_1)+b(T_1^2)+...$; a y b constantes según metales. Usualmente T_1 mide, T_2 referencia en Esta ecuación se supone $T_2=0^{\circ}$ C

Departamento Tecnología Electrónica

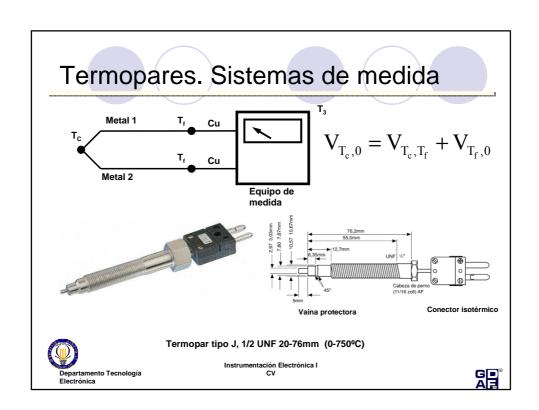
Termopares. Tipos

- Termopares prácticos: gran sensibilidad y estabilidad, bajo coste, repetibilidad...
- Cada metal tiene sensibilidad (μV/°K) respecto del Pt y referida a 0°C temperatura referencia
 - O Bismuto -72 μ V/°K; Alumen -13,6 μ V/°K; Cromo 25,8 μ V/°K.
 - O Ejemplo cálculo Cromo-alumen (tipo K) S=25,8-(-13,6)=39.4 μV/°K

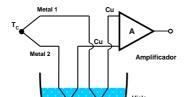
Tipo	Composición (terminal positivo - negativo)	Campo de medida recomendado	Sensibilidad (a 25°C)		
J	Fe - Constantán*	0 a 760ºC	51,5 μV/ºC		
K	Cromel* - Alumel*	-200 a 1250ºC	40,5 μV/ºC		
N	Nicrosil* - Nisil*	0 a 1260°C	26,5 μV/ºC		
Т	Cu - Constantán	-200 a 350°C	41,0 μV/ºC		
R	13%Pt 87%Rh - Pt	0 a 1450°C	6 μV/ºC		
S	10%Pt 90%Rh - Pt	0 a 1450°C	6 μV/ºC		
B	30%Pt 70%Rh - 6%Pt 94%Rh	800 a 1800°C	9 μV/ºC (a 1000 ºC)		

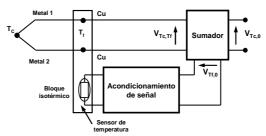
ins

Termopares. Tablas de calibración (tipo J)


Tensión termopar en μV, suponiendo unión referencia a 0°C.

T(°C)	0	1	2	3	4	5	6	7	8	9	10
100	5,268	5,322	5,376	5,431	5,485	5,540	5,594	5,649	5,703	5,758	5,812
110	5,812	5,867	5,921	5,976	6,031	6,085	6,140	6,195	6,249	6,304	6,359
120	6,359	6,414	6,468	6,523	6,578	6,633	6,688	6,724	6,797	6,852	6,907


¿tensión medida si la temperatura de la unión de referencia es 22°C y la otra está a 125°C?



Termopares. Acondicionamiento señal

Control y determinación de la T de referencia:

- 1. Fijar a un valor conocido. Métodos: baño a T constante u horno,
- 2. Permitir que varíe y añadir un circuito que Permita su compensación en línea

$$V_{T_c,T_f} = V_{T_c,0} + V_{0,T_f}$$

Luego:

$$V_{T_c,0} = V_{T_c,T_f} + V_{T_f,0}$$

Ejemplo: puente de Wheatstone o patilla tensión referencia AD620

nento Tecnología

