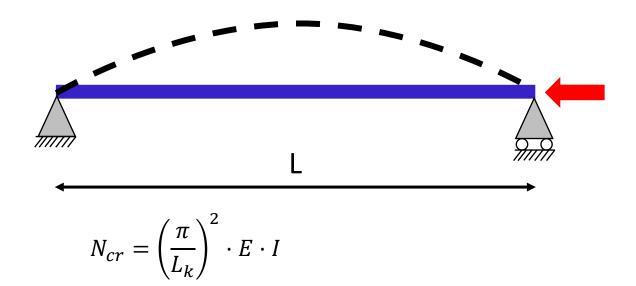
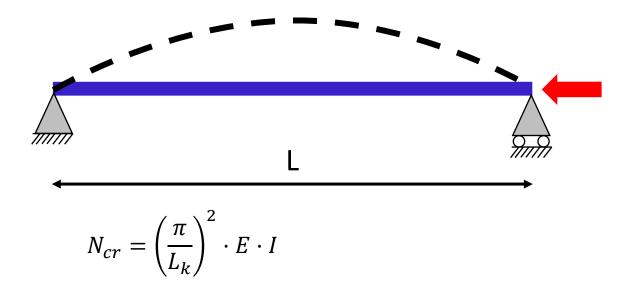
uc3m Universidad Carlos III de Madrid

OpenCourseWare

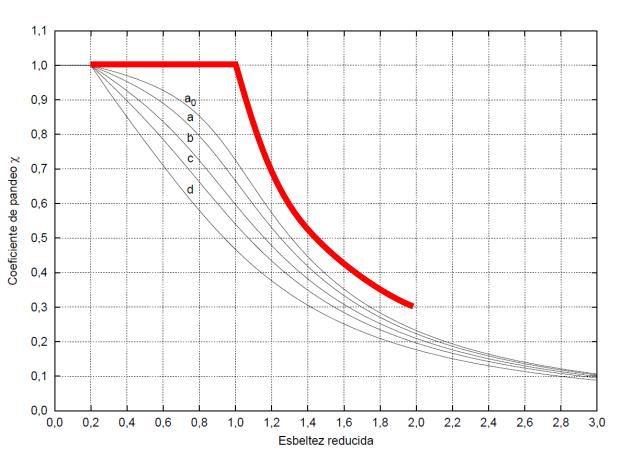

Teoría de Estructuras y Construcciones Industriales

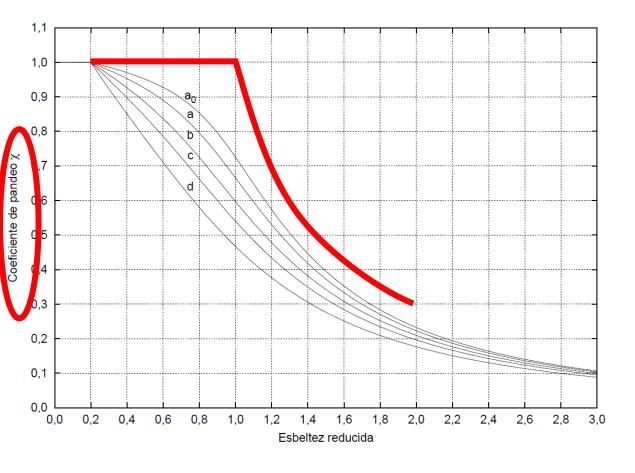
Carlos Santiuste Romero, Sara Garzón Hernández, Liu Jiao Wang, Manuel Cuadrado Sanguino, Luis Jiménez Girón, Daniel Herrero Adán


CTE: Pandeo por flexión en pieza real

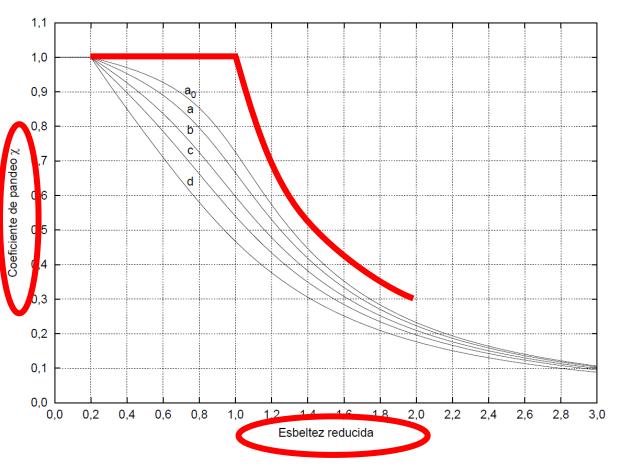
Ecuación de Euler

Ecuación de Euler

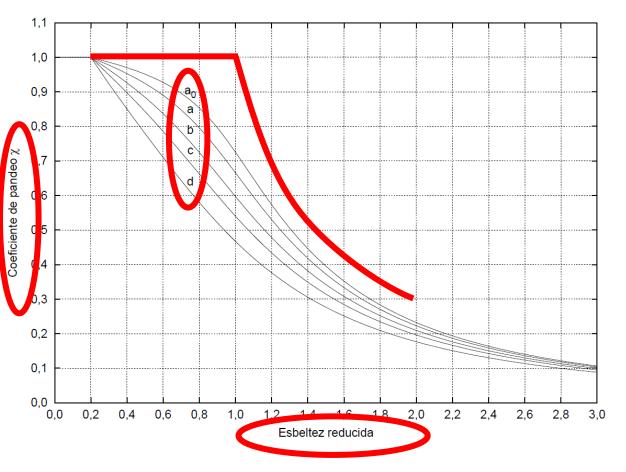



Imperfecciones geométricas:

- Falta de rectitud en directriz
- Tolerancias dimensionales sección
- Variación posición acciones


Imperfecciones mecánicas:

- Tensiones residuales
- Falta homogeneidad en material



$$N_{b,Rd} = \chi \cdot A \cdot f_{yd}$$

$$N_{b,Rd} = \chi \cdot A \cdot f_{yd}$$

$$N_{b,Rd} = \chi \cdot A \cdot f_{yd}$$

Esbeltez reducida

$$\bar{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$$

Esbeltez reducida

$$\bar{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cr}}} \qquad \frac{\overline{\lambda_y}}{\overline{\lambda_z}}$$

Esbeltez reducida

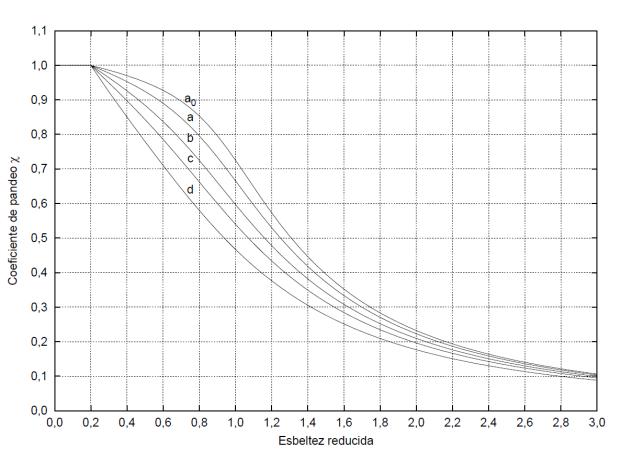
$$\bar{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cr}}} \qquad \qquad \overline{\lambda_y}$$

$$N_{cr} = \left(\frac{\pi}{L_k}\right)^2 \cdot E \cdot I$$

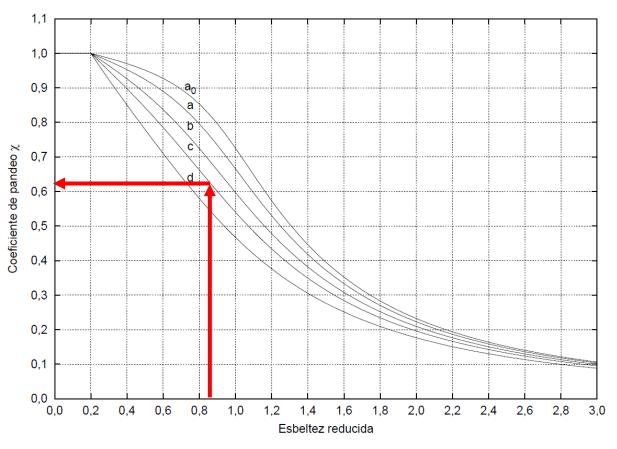
Tipo de curva: a₀, a, b, c, d

Tabla 6.2 Curva de pandeo en función de la sección transversal

	Tipo de acero	S235 a	S355	S4	50
	Eje de pandeo ⁽¹⁾	У	Z	у	Z
h/b > 1,2	t ≤ 40 mm	а	b	a _o	a _o
40 mm ·	< t ≤ 100 mm	b	С	а	а
h/b ≤ 1,2	$t \leq 100 \; mm$	b	С	а	а
t >	100 mm	d	d	С	С
t ≤	40 mm	b	С	b	С
t >	40 mm	С	d	С	d
		С	С	С	С
	40 mm · h/b ≤ 1,2 t >	Eje de pandeo (1) h/b > 1,2 $t \le 40 \text{ mm}$ 40 mm < $t \le 100 \text{ mm}$	Eje de pandeo (1) y $h/b > 1,2$ $t \le 40 \text{ mm}$ a $40 \text{ mm} < t \le 100 \text{ mm}$ b $h/b \le 1,2$ $t \le 100 \text{ mm}$ b $t > 100 \text{ mm}$ d $t \le 40 \text{ mm}$ c	Eje de pandeo (1) y z h/b > 1,2 $t \le 40 \text{ mm}$ a b 40 mm < $t \le 100 \text{ mm}$ b c h/b $\le 1,2$ $t \le 100 \text{ mm}$ b c $t > 100 \text{ mm}$ d d $t \le 40 \text{ mm}$ c d	Eje de pandeo (1) y z y h/b > 1,2 $t \le 40 \text{ mm}$ a b a_o 40 mm < $t \le 100 \text{ mm}$ b c a h/b $\le 1,2$ $t \le 100 \text{ mm}$ b c a $t > 100 \text{ mm}$ d d c $t \le 40 \text{ mm}$ b c b $t \ge 40 \text{ mm}$ c d c


Tipo de curva: a₀, a, b, c, d

Tipo de sección		-		S235 a S355		50
npo de sección		Eje de pandeo ⁽¹⁾	У	Z	у	Z
Perfiles laminados en I	h/b > 1,2	t ≤ 40 mm	а	b	a _o	a
tr	40 mm <	t ≤ 100 mm	b	С	а	а
h	$h/b \leq 1,2$	t ≤ 100 mm	b	С	а	а
z	t >	HEE	d	d	С	С
Perfiles armados en I	t ≤	40 mm	b	С	b	С
y — — y y — — — y	t >	40 mm	С	d	С	d
Agrupación de perfiles laminados soldados						
			С	С	С	С


Tipo de curva: a₀, a, b, c, d

ipo de sección		Tipo de acero	S235 a	S355	S4	50
ipo de Seccion		Eje de pandeo ⁽¹⁾	У	Z	у	Z
Perfiles laminados en I	h/b > 1,2		а	b	a₀	a _o
tr	40 mm <	IPE, IPN t ≤ 100 mm	b	С	а	а
h y — — — — — y	h/b ≤ 1,2	t ≤ 100 mm	b	С	а	а
z	t > 1	100 mm	d	d	С	С
erfiles armados en I	t ≤	40 mm	b	С	b	С
y — — y y — — y y y	t >	40 mm	С	d	С	d
Agrupación de perfiles laminados soldados						
			С	С	С	С

Coeficiente de pandeo – Figura 6.3

Coeficiente de pandeo – Figura 6.3

0,62-0,64

Coeficiente de pandeo – Tabla 6.3

			Curva de pandec)	
sbeltez reducida	a_0	а	b	С	d
Coeficiente (α) de imperfección	0,13	0,21	0,34	0,49	0,76
≤ 0,20	1,00	1,00	1,00	1,00	1,00
0,30	0,99	0,98	0,96	0,95	0,92
0,40	0,97	0,95	0,93	0,90	0,85
0,50	0,95	0,92	0,88	0,84	0,78
0,60	0,93	0,89	0,84	0,79	0,71
0,70	0,90	0,85	0,78	0,72	0,64
0,80	0,85	0,80	0,72	0,66	0,58
0,90	0,80	0,73	0,66	0,60	0,52
1,00	0,73	0,67	0,60	0,54	0,47
1,10	0,65	0,60	0,54	0,48	0,42
1,20	0,57	0,53	0,48	0,43	0,38
1,30	0,51	0,47	0,43	0,39	0,34
1,40	0,45	0,42	0,38	0,35	0,31
1,50	0,40	0,37	0,34	0,31	0,28
1,60	0,35	0,32	0,31	0,28	0,25
1,80	0,28	0,27	0,25	0,23	0,21
2,00 (1)	0,23	0,22	0,21	0,20	0,18
2,20 ⁽¹⁾	0,19	0,19	0,18	0,17	0,15
2.40 (1)	0,16	0,16	0,15	0,14	0,13
2.70 ⁽²⁾	0,13	0,13	0,12	0,12	0,11
3,00 (2)	0,11	0,10	0,10	0,10	0,09

⁽¹⁾ esbeltez intolerable en los elementos principales (2) esbeltez intolerable incluso en elementos de arriostramiento

Coeficiente de pandeo – Tabla 6.3

			Curva de pande	0	
sbeltez reducida	a_0	а	b	С	d
Coeficiente (α) de imperfección	0,13	0,21	0,34	0,49	0,76
≤ 0,20	1,00	1,00	1,00	1,00	1,00
0,30	0,99	0,98	0,96	0,95	0,92
0,40	0,97	0,95	0,93	0,90	0,85
0,50	0,95	0,92	0,88	0,84	0,78
0,60	0,93	0,89	0,84	0,79	0,71
0,70	0,90	0,85	0,78	0,72	0,64
0,80	0,85	0,80	0,72	0,66 0 62	0,58
0,90	0,80	0,73	0,66	$\longrightarrow_{0,60}^{0,66}$ 0,63	0,52
_1,00	0,73	0,67	0,60	0,54	0,47
1,10	0,65	0,60	0,54	0,48	0,42
1,20	0,57	0,53	0,48	0,43	0,38
_1,30	0,51	0,47	0,43	0,39	0,34
1,40	0,45	0,42	0,38	0,35	0,31
1,50	0,40	0,37	0,34	0,31	0,28
1,60	0,35	0,32	0,31	0,28	0,25
1,80	0,28	0,27	0,25	0,23	0,21
2,00 (1)	0,23	0,22	0,21	0,20	0,18
2,20 ⁽¹⁾	0,19	0,19	0,18	0,17	0,15
2 40 (1)	0,16	0,16	0,15	0,14	0,13
2.70 ⁽²⁾	0,13	0,13	0,12	0,12	0,11
3,00 (2)	0,11	0,10	0,10	0,10	0,09

⁽¹⁾ esbeltez intolerable en los elementos principales (2) esbeltez intolerable incluso en elementos de arriostramiento

Coeficiente de pandeo – Tabla 6.3

			Curva de pande)	
sbeltez reducida	\mathbf{a}_0	а	b	С	d
Coeficiente (α) de imperfección	0,13	0,21	0,34	0,49	0,76
≤ 0,20	1,00	1,00	1,00	1,00	1,00
0,30	0,99	0,98	0,96	0,95	0,92
0,40	0,97	0,95	0,93	0,90	0,85
0,50	0,95	0,92	0,88	0,84	0,78
0,60	0,93	0,89	0,84	0,79	0,71
0,70	0,90	0,85	0,78	0,72	0,64
0,80	0,85	0,80	0,72	0,66	0,58
0,90	0,80	0,73	0,66	$\rightarrow_{0,60}^{0,60}$ 0,63	0,52
1,00	0,73	0,67	0,60	0,54	0,47
1,10	0,65	0,60	0,54	0,48	0,42
1,20	0,57	0,53	0,48	0,43	0,38
1,30	0,51	0,47	0,43	0,39	0,34
1,40	0,45	0,42	0,38	0,35	0,31
1,50	0,40	0,37	0,34	0,31	0,28
1,60	0,35	0,32	0,31	0,28	0,25
1,80	0,28	0,27	0,25	0,23	0,21
2,00 (1)	0,23	0,22	0,21	0,20	0,18
2,20 ⁽¹⁾	0,19	0,19	0,18	0,17	0,15
2.40 ⁽¹⁾	0,16	0,16	0,15	0,14	0,13
2.70 ⁽²⁾	0 13	0,13	0,12	0,12	0,11
3.00 (2)	0,11	0,10	0,10	0,10	0,09
(1) ashaltaz intalarahla an					

⁽¹⁾ esbeltez intolerable en los elementos principales (2) esbeltez intolerable incluso en elementos de arriostramiento

Coeficiente de pandeo – Ecuación 6.19

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \left(\lambda_k^-\right)^2}} \le 1$$

$$\phi = 0.5 \cdot \left[1 + \alpha \cdot \left(\overline{\lambda}_{k} - 0.2 \right) + \left(\overline{\lambda}_{k}^{-} \right)^{2} \right]$$

Coeficiente de pandeo – Ecuación 6.19

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \left(\overline{\lambda_k}\right)^2}} \le 1$$

$$\phi = 0.5 \cdot \left[1 + \alpha \cdot \left(\overline{\lambda}_{k} - 0.2 \right) + \left(\overline{\lambda}_{k}^{-} \right)^{2} \right]$$

Tabla 6.3 Valores del coeficiente de pandeo (χ)

Esbeltez reducida			Curva de pandeo)	
	\mathbf{a}_0	а	b	С	d
Coeficiente (α) de imperfección	0,13	0,21	0,34	0,49	0,76
≤ 0,20	1,00	1,00	1,00	1,00	1,00
0,30	0,99	0,98	0,96	0,95	0,92
0,40	0,97	0,95	0,93	0,90	0,85
0.50	0.95	n a2	N 88	N 84	N 78

Coeficiente de pandeo – Ecuación 6.19

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \left(\overline{\lambda_k}\right)^2}} \le 1$$

$$\phi = 0.5 \cdot \left[1 + \alpha \cdot \left(\overline{\lambda}_k - 0.2 \right) + \left(\overline{\lambda}_k^- \right)^2 \right] = 1,0205$$

Tabla 6.3 Valores del coeficiente de pandeo (χ)

Esbeltez reducida			Curva de pandeo)	
	a_0	а	b	С	d
Coeficiente (α) de imperfección	0,13	0,21	0,34	0,49	0,76
≤ 0,20	1,00	1,00	1,00	1,00	1,00
0,30	0,99	0,98	0,96	0,95	0,92
0,40	0,97	0,95	0,93	0,90	0,85
0.50	n a5	n q2	N 88	N 84	N 78

Coeficiente de pandeo – Ecuación 6.19

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \left(\overline{\lambda_k}\right)^2}} \le 1 = 0,6308$$

$$\phi = 0.5 \cdot \left[1 + \alpha \cdot \left(\overline{\lambda}_k - 0.2 \right) + \left(\overline{\lambda}_k^- \right)^2 \right] = 1,0205$$

Tabla 6.3 Valores del coeficiente de pandeo (χ)

Esbeltez reducida			Curva de pandeo)	
	\mathbf{a}_0	а	b	С	d
Coeficiente (α) de imperfección	0,13	0,21	0,34	0,49	0,76
≤ 0,20	1,00	1,00	1,00	1,00	1,00
0,30	0,99	0,98	0,96	0,95	0,92
0,40	0,97	0,95	0,93	0,90	0,85
0.50	n 95	n a2	N 88	N 84	N 78

uc3m Universidad Carlos III de Madrid

OpenCourseWare

Teoría de Estructuras y Construcciones Industriales

Carlos Santiuste Romero, Sara Garzón Hernández, Liu Jiao Wang, Manuel Cuadrado Sanguino, Luis Jiménez Girón, Daniel Herrero Adán

CTE: Pandeo por flexión en pieza real

