uc3m Universidad Carlos III de Madrid

OpenCourseWare

Matemáticas para la Economía II (Grados Empresa)

Paula Rosado Jiménez

Ejemplo de examen Junio 2023

Universidad Carlos III de Madrid

Departamento de Economía

Examen final de Matemáticas II. 28 de junio de 2023.

(1) Dado el siguiente sistema de ecuaciones lineales.

$$\begin{cases} x+y+z &= a \\ ax+(1+a)y+z &= 2 \\ x+by+bz &= 1+b \end{cases}$$

donde $a \in \mathbb{R}$.

- (a) (20 puntos) Clasifique el sistema según los valores de $a, b \in \mathbb{R}$.
- (b) (10 puntos) Resuelva el sistema de ecuaciones para los valores de a = 2 y b = 1.
- (2) Considere el conjunto

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, x > 0, y > 0\}$$

y la función

$$f(x,y) = 3x + 4y$$

- (a) **(20 puntos)** Dibuje el conjunto A, su frontera y su interior. Justifique si el conjunto A es abierto, cerrado, acotado, compacto o convexo.
- (b) (10 puntos) Enuncie el teorema de Weierstrass. Determine si es posible aplicar el teorema de Weierstrass a la función f definida en el conjunto A.
- (c) (10 puntos) Dibuje las curvas de nivel de la función f, indicando la dirección de crecimiento de la función.
- (d) (20 puntos) Utilizando las curvas de nivel de la función f, determine (en caso de que existan) los puntos extremos globales de la función f en el conjunto A.
- (3) Considere el conjunto de ecuaciones

$$x^2 + 2xy + z^2 + 3 = 0$$
$$y^2 + xz = 4$$

- (a) (10 puntos) Demuestre que el anterior sistema de ecuaciones determina implícitamente dos funciones diferenciables y(x) y z(x) en un entorno del punto $(x_0, y_0, z_0) = (-1, 2, 0)$.
- (b) (20 puntos) Calcule

$$y'(x), \quad z'(x)$$

en el punto $x_0 = -1$.

- (c) (10 puntos) Calcule el polinomio de Taylor de orden 1 de las funciones y(x) y z(x) en el punto $x_0 = -1$.
- (4) Clasifique la forma cuadrática $Q(x,y,z) = axz + x^2 + 4xy + 5y^2 + 6yz + 2z^2$ en función del parámetro $a \in \mathbb{R}$. (20 puntos)
- (5) Considere los puntos extremos de la función

$$f(x, y, z) = x^3 + y + z^2$$

en el conjunto

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + 2z^2 = 4, \quad x + y = 2\}$$

1

- (a) (10 puntos) Escriba la función Lagrangiana y las ecuaciones de Lagrange.
- (b) (20 puntos) Encuentre las soluciones de las ecuaciones de Lagrange.
- (c) (20 puntos) Utilice las condiciones de segundo orden para determinar si las soluciones de las ecuaciones de Lagrange corresponden a un valor máximo o mínimo local de la función f en el conjunto S.
- (d) (10 puntos) ¿Alguna de las soluciones de las ecuaciones de Lagrange corresponde a un valor máximo o mínimo global de f en el conjunto S?