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(1) Given the following system of linear equations, x+ 3y − az = 4
2x− 3y + 2z = 2

3x+ az = b

where a, b ∈ R.
(a) (20 points) Classify the system according to the values of a and b.

Solution: The matrix associated with the system is 1 3 −a 4
2 −3 2 2
3 0 a b


We perform the following operations

row 2 7→ row 2− 2× row 1

row 3 7→ row 3− 3× row 1

And we obtain that the original system is equivalent to another one whose augmented matrix is the
following  1 3 −a 4

0 −9 2a+ 2 −6
0 −9 4a b− 12


Now, we perform the operation row 3 7→ row 3− row 2 and we obtain 1 3 −a 4

0 −9 2a+ 2 −6
0 0 2a− 2 b− 6


We see that

(i) if a ̸= 1, then rankA = 3 = rank(A|b). The system is consistent with a unique solution.

(ii) If a = 1 and b = 6, then rankA = rank(A|b) = 2. The system is consistent with 3 − 2 = 1
parameters.

(iii) If a = 1 and b ̸= 6, then rankA = 2 < rank(A|b) = 3. The system is not consistent.

(b) (10 points) Solve the above system for the values of a and b for which the system has infinitely
many solutions.
Solution: We need a = 1 and b = 6. The proposed system of linear equations is equivalent to the
following one {

x+ 3y − z = 4
−9y + 4z = −6

The solution is

z ∈ R, x = 2− z

3
, y =

2

9
(2z + 3)
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(2) Consider the set

A = {(x, y) ∈ R2 : y − x2 + x ≥ 0, y − x− 3 ≥ 0}

and the function

f(x, y) = y − 2x

(a) (20 points) Sketch the graph of the set A, its boundary and its interior and justify if it is open,
closed, bounded, compact or convex.
Solution: The set A is approximately as indicated in the picture.

!

"

# = % + 3

# = %( − %

(−1,2)
(3,6)

# = %( − %

The interior and the boundary are

!"

"

The functions h1(x, y) = y − x2 + x and h2(x, y) = y − x − 3 are continuous (since, they are
polynomials) and A = {(x, y) ∈ R2 : 1 ≤ h1(x, y) ≥ 0, h2(x, y) ≥ 0}. Hence, the set A closed
(Note also that ∂A ⊂ A). It is not open because A ∩ ∂A ̸= ∅.
We see that any point of the form (0, y) with y ≥ 10 is in the set A. Hence, the set A is not
bounded. Therefore, the set A is not compact.

We show next that A is also convex. The function x2 + x is convex. Hence the set A1 = {(x, y) ∈
R2 : y ≥ y − x2 + x} is convex. On he other hand, the function x+ 3 is convex. Therefore, the set
A2 = {(x, y) ∈ R2 : y ≥ x+ 3} is also convex. We conclude now that the set A = A1 ∩ A2 is also
convex.

(b) (10 points) State Weierstrass’ Theorem. Determine if it is possible to apply Weierstrass’ Theorem
to the function f defined on A.
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Solution: The set A is not compact. Therefore, Weierstrass Theorem may not be applied.

(c) (10 points) Draw the level curves of f , indicating the direction of growth of the function.
Solution:
The level curves f(x, y) = y − 2x = C are straight lines of the form y = 2x+ C Graphically,

! = −3
! = 3

! = 13

! = 23

! = 33

'

(

The red arrow represents the direction of growth of the function f .

(d) (20 points) Using the level curves of f , determine (if they exist) the extreme global points of f
on the set A.
Solution: Since, any point of the form (0, y) with y ≥ 10 is in the set A, the function f does
not attain a maximum in A. Graphically, we wee that the minimum value is attained at the point
(3, 6).

!

"

(3,6)

( = 0

The minimum value is f(3, 6) = 0.
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(3) Consider the set of equations

3xy + y2 + z2 = 1

x2 + yz = 1

(a) (10 points) Prove that the above system of equations determines implicitly two differentiable
functions y(x) and z(x) in a neighborhood of the point (x0, y0, z0) = (1, 0,−1).
Solution: We first remark that (x0, y0, z0) = (1, 0,−1). is a solution of the system of equations.
The functions f1(x, y, z) = 3xy + y2 + z2 − 1 and f2(x, y, z) = x2 + yz − 1 are of class C∞. We
compute∣∣∣∣∣∂f1∂y

∂f1
∂z

∂f2
∂y

∂f2
∂z

∣∣∣∣∣
(x,y,z)=(1,0,−1)

=

∣∣∣∣ 3x+ 2y 2z
z y

∣∣∣∣
(x,y,z)=(1,0,−1)

=

∣∣∣∣ 3 −2
−1 0

∣∣∣∣ = −2

By the implicit function theorem, the above system of equations determines implicitly two differen-
tiable functions y(x) and z(x) in a neighborhood of the point (x0, y0, z0) = (1, 0,−1).

(b) (20 points) Compute
y′(x), z′(x)

at the point x0 = 1.
Solution: Differentiating implicitly with respect to x,

2y(x)y′(x) + 3xy′(x) + 3y(x) + 2z(x)z′(x) = 0(1)

z(x)y′(x) + y(x)z′(x) + 2x = 0(2)

(3)

We plug in the values x = 1, y(1) = 0, z(1)) = −1 to obtain the following

3y′(1)− 2z′(1) = 0

2− y′(1) = 0

So,
y′(1) = 2, z′(1) = 3

(c) (20 points) Compute
y′′(x), z′′(x)

at the point x0 = 1.
Solution: Differentiation equation 1 with respect to x we obtain

3xy′′(x) + 2y(x)y′′(x) + 2y′(x)2 + 6y′(x) + 2z(x)z′′(x) + 2z′(x)2 = 0

z(x)y′′(x) + 2y′(x)z′(x) + y(x)z′′(x) + 2 = 0

We plug in the values x = 1, y(1) = 0, z(1)) = −1, y′(1) = 2, z′(1) = 3 to obtain the following

3y′′(1)− 2z′′(1) + 38 = 0

14− y′′(1) = 0

So,
y′′1) = 14, z′′(1) = 40
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(4) Classify the following quadratic form Q(x, y, z) = c2x2−2cxz+x2−2xy−2xz+y2+2yz+2z2 according
to the values of c ∈ R. (30 points)

Solution: The associated matrix is

A =

 c2 + 1 −1 −c− 1
−1 1 1

−c− 1 1 2


We have D1 = c2 + 1 > 0. D2 =

∣∣∣∣ c2 + 1 −1
−1 1

∣∣∣∣ = c2 ≥ 0. To compute D3 we note that

|A| =

∣∣∣∣∣∣
c2 + 1 −1 −c− 1
−1 1 1

−c− 1 1 2

∣∣∣∣∣∣ r3 7→r2−r3
= −

∣∣∣∣∣∣
c2 + 1 −1 −c− 1
−1 1 1
c 0 −1

∣∣∣∣∣∣ r27→r2+r1
= −

∣∣∣∣∣∣
c2 + 1 −1 −c− 1
c2 0 −c
c 0 −1

∣∣∣∣∣∣ = −
∣∣∣∣ c2 −c

c −1

∣∣∣∣ = 0

So, D3 = |A| = 0. We see immediately that if c ̸= 0, the quadratic form Q is positive semidefinite. If
c = 0, The associated matrix is  1 −1 −1

−1 1 1
−1 1 2


with D1 = 1 > 0. D2 = D3 = 0. However, if look at the chain of principal minors

D1 = a33 = 2 > 0, D2 =

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ = ∣∣∣∣ 1 1
1 2

∣∣∣∣ = 1 > 0, D3 = 0

We see that the quadratic form is positive semidefinite.
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(5) Consider the extreme points of the function

f(x, y) = x2 − xy + y2 − 3y

in the set
S =

{
(x, y) ∈ R2 : 2x− y = 4

}
(a) (10 points) Write the Lagrangian function and the Lagrange equations.

Solution: The Lagrangian is

L(x, y) = x2 − xy + y2 − 3y + λ(2x− y − 4)

The Lagrange equations are

2λ+ 2x− y = 0

−λ− x+ 2y − 3 = 0

2x− y = 4

(b) (20 points) Compute the solution(s) of the Lagrange equations.
Solution: Plugging 2x− y = 4 into the first equation we obtain λ = −2. Plugging now λ = −2
into the second equation we obtain the linear system

−x+ 2y = 1

2x− y = 4

whose solution is x = 3, y = 2.

(c) (20 points) Use the second order conditions to determine if the solution(s) of the Lagrange
equations correspond to a local maximum or minimum value of f in S.
Solution: The Hessian matrix associated with the Lagrangian is

HL(x, y;λ) =

(
2 −1
−1 2

)
which is definite positive, since D1 = 2 > 0 and D2 = 3 > 0. Hence the point (3, 2) corresponds to
a local minimum.

(d) (20 points) Does any of the solutions of the Lagrange equations correspond to global maximum
or minimum of the function f in the set S?
Solution: The set S is not compact. Therefore, Weiestrass’ Theorem does not apply. However,
we can check easily that the Hessian matrix of the function f(x, y) = x2 − xy + y2 − 3y is also(

2 −1
−1 2

)
which, as seen above, is definite positive. Hence the function f is convex in the (convex) set
S.Therefore, the function f attains a minimum value on S, which must be a solution of the La-
grange equations. We conclude that the point (3, 2) corresponds to a global minimum of f on S.
Since, we have seen in the previous part that the function f does not have a local maximum in S,
we conclude immediately that it does not have neither a global maximum in S. Another way to
obtain the same conclusion is to note that limy→∞ f(x, 2x− 4) = limy→∞

(
3x2 − 18x+ 28

)
= ∞,

which also proves that the function f(x, 2x− 4) does not have a global maximum in S.


