uc3m Universidad Carlos III de Madrid

OpenCourseWare (2023)

CHEMISTRY II

Verónica San Miguel Arnanz Teresa Pérez Prior Berna Serrano Prieto

Department of Materials Science and Engineering and Chemical Engineering

STEREOCHEMISTRY

Contents

Isomerism

Conformational Isomerism

Newman Projections Conformational Analysis

Enantiomers

Quirality. The Symmetry in Molecules Optical Activity Absolute Configuration: *R*, *S* Sequence Rules Fischer Projections

Diastereomers

1. Isomerism

ISOMERISM Isomers They have the same molecular formula, but different structures **STRUCTURAL SPATIAL** Constitutional Isomers Stereoisomers Diastereomers Skeletal **Functional Positional Conformational Isomers Enantiomers** (Non-mirror-image) (Mirror-image) C₄H₁₀: C_2H_6O : C₃H₉N: NH_2 CH_3 CO₂H CO₂H CH₃CH₂OH CH₃CHCH₃ CH₃CHCH₃ Ethanol H₃CIII" Isopropylamine 2-Methylpropane CH₃OCH₃ CH₃CH₂CH₂NH₂ CH₃CH₂CH₂CH₃ (R)-Lactic acid (S)-Lactic acid Butane Dimethyl ether Propylamine

`CI

Cis 1,2-dichloroethene

CI

Trans 1,2-dichloroethene

Cis-trans

diastereomers

Configurational

diastereomers

Stereoisomerism

Describes isomers whose atoms are connected in the same order but differ in their spatial arrangement

Conformational Isomerism

Isomers can be interconverted exclusively by rotations about formally single bonds.

Rotation interconverts the conformations of *ethane*

Conformations or Conformers:

2. Conformational Isomerism

Conformational Isomerism

NEWMAN PROJECTIONS

Side-on views of the molecule

Newman projection

Butane—anti conformation (0 kJ/mol)

Butane—eclipsed conformation (16 kJ/mol)

Conformational Isomerism

Potential energies of the conformers of ethane

Torsional energy (rotational or torsional strain).- The change in energy resulting from bond rotation from the staggered to the eclipsed conformation.

Conformational Isomerism

Conformational analysis of butane

Steric hindrance raises the energy barrier to rotation

Newman projections about the C2-C3 bond

Approximate energy values for conformer interactions:

 $\begin{array}{lll} \text{H} \longleftrightarrow \text{H} \text{ eclip.} & \text{4 kJ/mol} \\ \text{H} \longleftrightarrow \text{CH}_3 \text{ eclip.} & \text{6 kJ/mol} \\ \text{CH}_3 \longleftrightarrow \text{CH}_3 \text{ eclip.} & \text{11 kJ/mol} \\ \text{CH}_3 \longleftrightarrow \text{CH}_3 \text{ gauche} & \text{3.8 kJ/mol} \end{array}$

2. Conformational Isomerism

Conformational Isomerism

Conformations of cyclohexane

Chair conformation

Twist-boat conformation

Steric strain and torsional strain, 23 kJ/mol higher in energy than the chair conformation.

Axial and equatorial positions in chair cyclohexane.

A ring-flip in chair cyclohexane interconverts axial and equatorial positions.

Stereoisomerism

Describes isomers whose atoms are connected in the same order but differ in their spatial arrangement

Enantiomers are two stereoisomers that are related to each other by a reflection: they are mirror images of each other,

which are non-superimposed.

Human hands are perhaps the most universally recognized example of chirality: The left hand is a non-superimposed mirror image of the right hand.

Left hand

Right hand

Chirality

It appears when the four substituents of a C atom are different.

That C atom is called **CHIRAL CENTER**

3. Enantiomers

Chirality. The symmetry in molecules

ENANTIOMERS

Optical Activity

Enantiomers have the property of *polarizing light*: to change the polarization angle of light when it passes through a solution containing them. Substances which exhibit this property are said to be **optically active**.

Polarimeter:

An enantiomer can be named by the direction in which it rotates the plane of polarized light:

- ✓ If rotates the plane of light in a *clockwise* sense: dextrorotatory \Rightarrow (+) enantiomer.
- ✓ If rotates the plane of light in a *counterclockwise* sense: levorotatory \Rightarrow (–) enantiomer.

An equimolecular mixture of both is called racemic mixture and has no optical activity.

Specific rotation $[\alpha]$

 $[\alpha]$ is defined as the observed angle of optical rotation α when plane-polarized light is passed through a sample with a path length of 1 decimeter and a sample concentration of 1 gram per 1 milliliter.

 λ : wavelength of incident light = 598 nm t: temperature in °C

Absolute Configuration: R, S Sequence Rules

Cahn-Ingold-Prelog rules:

Sign of Rotation

Lower Ranking

Rank the four atoms, directly attached to the chirality center, according to atomic number.

Atomic Number 35 17 16 15 8 7 6 2 1

Higher Ranking
$$Br > Cl > S > P > O > N > C > {}^{2}H > {}^{1}H$$

If two substituents have the same rank, look at the the second, third, or fourth atoms away from the chirality center until the first difference is found.

Multiple-bonded atoms are equivalent to the same number of single-bonded atoms.

Absolute Configuration: R, S Sequence Rules

Cahn-Ingold-Prelog rules:

If the priority of the remaining three substituents decreases in **clockwise** direction, it is labeled **R** (from the Latin *Rectus*, meaning "right"), if it decreases in **counterclockwise** direction, it is **S** (from the Latin *Sinestra*, meaning "left").

Note: the sign of optical rotation, (+) or (–), is not related to the *R*, *S* designation.

R configuration

S configuration

Assignement configuration to Lactic acid:

R configuration(-)-Lactic acid

S configuration (+)-Lactic acid

Fischer Projections

They are 2D representations of stereochemistry at chirality centers, particularly in carbohydrate chemistry.

- Molecule is drawn in the form of a cross with the central C at the point of intersection:
 - ✓ Horizontal lines signify bonds directed toward the viewer.
 - ✓ Vertical lines are pointing away.

Fischer projection conversion

- ➤ It is only allowed to rotate 180°, NOT 90° NOR 270°.
- > You can fix ONE group and rotate the other three in clockwise or anticlockwise without changing the configuration.

Diastereomers. Molecules incorporating several stereocenters.

When molecules contain more than one quiral center (n centers), the number of stereoisomers roughly grows as 2ⁿ. Some of these isomers are not enantiomers because they are not mirror images. These isomers are called *Diastereomers*.

Image Credits

Slides 3, 7 (butane structure), 14 (Fischer projection conversión):

• Images made by the authors.

Slides 4-10, 11 (polarimeter), 12-14, 15 (modified by authors):

• Organic Chemistry. A tenth Edition. John McMurry, Cornell University (Emeritus), CC BY-SA 4.0, https://openstax.org/details/books/organic-chemistry.

Slide 5:

• Newman projection: Amelliug, CC BY-SA 3.0, https://commons.wikimedia.org/wiki/File:Newman.svg.

Slide 11:

• Enantiomers: HGTCChem, CC BY 2.0, https://www.flickr.com/photos/99701234@N02/10520824284.