uc3m Universidad Carlos III de Madrid

OpenCourseWare (2023)

CHEMISTRY II

Verónica San Miguel Arnanz Teresa Pérez Prior Berna Serrano Prieto

Department of Materials Science and Engineering and Chemical Engineering

HYDROCARBON COMPOUNDS

2.3. Hydrocarbon Compounds

Contents

Alkanes

Introduction Physical Properties of Alkanes Chemical Properties of Alkanes **Haloalkanes** Structure and Physical Properties Reactivity of haloalkanes Nucleophilic Substitution Elimination Reaction

Alkenes

Introduction Physical Properties of Alkenes Synthesis of Alkenes Reactivity of Alkenes

Alkynes

Introduction Physical Properties of Alkynes Synthesis of Alkynes Reactivity of Alkynes

Aromatic Hydrocarbons

Introduction Reactivity of Aromatic compounds

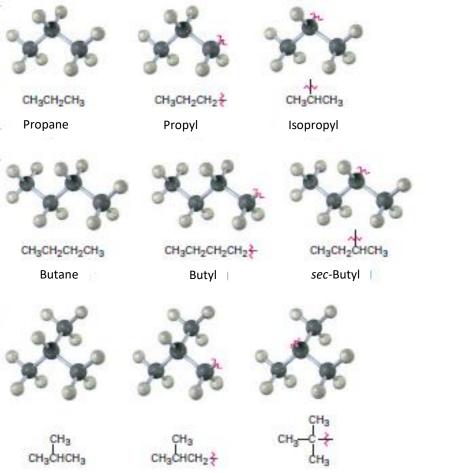
Straight-Chain Alkanes

Universidad Carlos III de Madrid

uc3m

- Methane (CH₄) is the smallest member of a series of hycrocarbons known as alkanes.
- Alkanes are hydrocarbons that have only single bonds between atoms.

name	Kekulé structure	condensed structure	ball-and-stick model			
methane	н н—С—н н	CH ₄		Number of carbons (<i>n</i>)	Name	Formula (C _n H _{2n+2})
	ң ң		2 2	1	Methane	CH4
ethane	$\begin{array}{c} H & H \\ I & I \\ H - C - C - H \\ I & I \\ H & H \end{array}$	CH ₃ CH ₃		2	Ethane	C ₂ H ₆
	II II			3	Propane	C ₃ H ₈
	ннн			4	Butane	C ₄ H ₁₀
propane	$\begin{array}{ccccc} H & H & H \\ H & - & & \\ H - C - C - C - C - H \\ & & \\ H & H & H \end{array}$	CH ₃ CH ₂ CH ₃		5	Pentane	C ₅ H ₁₂
	нпп		5	6	Hexane	C ₆ H ₁₄
				7	Heptane	C ₇ H ₁₆
butane	$\begin{array}{cccccccc} H & H & H & H \\ I & I & I & I \\ H - C - C - C - C - C - H \\ I & I & I \\ H & H & H \end{array}$	CH ₃ CH ₂ CH ₂ CH ₃		8	Octane	C ₈ H ₁₈
butune						2


Universidad Carlos III de Madrid

uc3m

C3

 C_4

Branched-Chain Alkanes

Isobutyl

tert-Butyl

Isobutane

Primary carbon is bonded to one other carbon

Secondary carbon is bonded to two other carbon

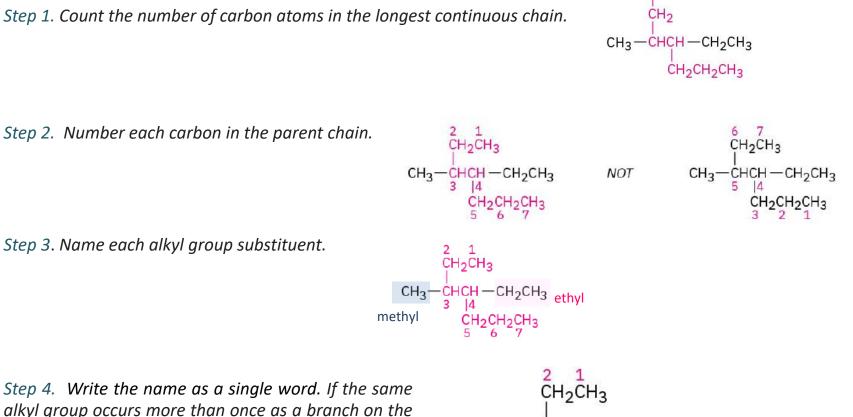
Tertiary carbon is bonded to three other carbon

R

R

Quaternary carbon is bonded to four other carbon

CH₃



Naming branched-chain alkanes

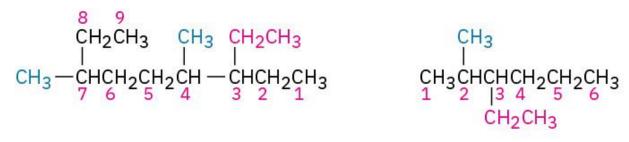
Universidad

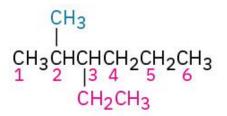
uc3m

Step 1. Count the number of carbon atoms in the longest continuous chain.

Step 4. Write the name as a single word. If the same alkyl group occurs more than once as a branch on the parent structure, use a prefix (di-, tri-, tetra-, and so on) before its name to indicate how many times it appears.

4-Ethyl-3-methylheptane


CH₂CH₂CH₃


CH₃CHCHCH₂CH₃ 3 4

EXAMPLES

$$\begin{array}{r}
2 & 1 \\
CH_2CH_3 \\
| \\
CH_3CH_2CH_2CH - CH_3 \\
6 & 5 & 4 & 3
\end{array}$$

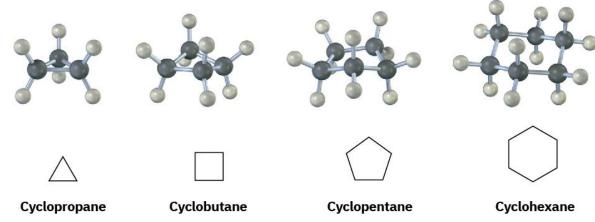


3-Methylhexane

3-Ethyl-4,7-dimethylnonane

3-Ethyl-2-methylhexane

2,3-Dimethyl-6-(2-methylpropyl)decane


$$\begin{array}{c} & & CH_{3} \\ & 4 & 3 & | 2 & 1 \\ & CH_{2}CH_{2}CH_{2}CHCH_{3} \\ \\ & & CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH - CHCHCH_{3} \\ & & & | & | \\ & & H_{3}C & CH_{3} \end{array}$$

5-(1,2-Dimethylpropyl)-2-methylnonane

CYCLOALKANES

An organic compound that contains a hydrocarbon ring is called a **cyclic hydrocarbon**. To indicate that a hydrocarbon has a ring structure, the prefix *cyclo*- is used with the hydrocarbon name. Thus, cyclic hydrocarbons that contain only single bonds are called **cycloalkanes**.

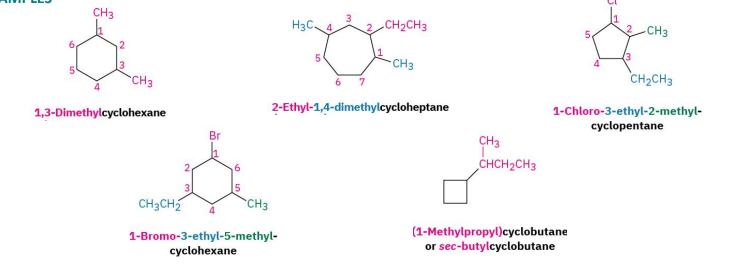
Naming substituted cycloalkanes

- With cycloalkanes, there is no need to find the longest chain because the ring is always considered to be the parent chain.
- Numbering is started on the carbon that is bonded to the substituent group.
- When there are two or more substituents, the carbons are numbered around the ring in a way that gives the lowest-possible set of numbers for the substituents.
- If only one group is attached to the ring, no number is necessary.

CYCLOALKANES

Step 1. Count the carbons in the ring, and use the name of the parent cyclic hydrocarbon.

Step 2. Number the ring, starting from one of the CH_3 — branches. Find the numbering that gives the lowest possible set of numbers for the branches.

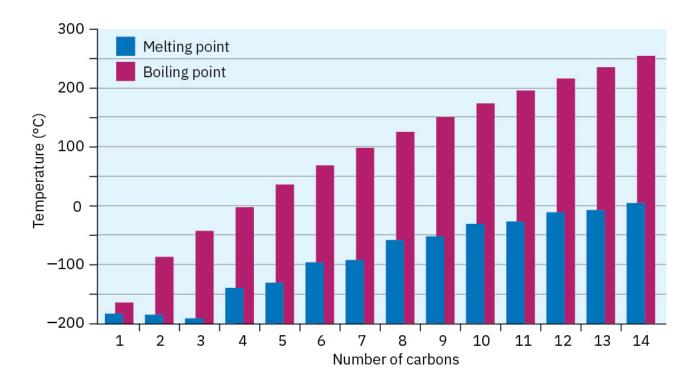

Step 3. Name the substituents.

Step 4. Add the prefix to show the number of groups present.

Step 5. Order the substituents alphabetically.

Step 6. Put the name together using the name of the parent cycloalkane. Use commas between separate numbers, and hyphens between numbers and words.

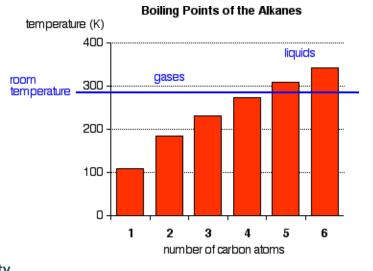
EXAMPLES



Physical properties of Alkanes

Polarity, melting, and boiling points

- ✓ *Nonpolar molecules:* Alkanes are composed of relatively nonpolar C—C bonds and C—H bonds.
- ✓ Weak attractions: Alkanes tend to have lower melting points and boiling points than other organic compounds of comparable molecular weights.
- ✓ Branched alkanes: Increased branching lowers an alkane's boiling point.


Physical properties of Alkanes

Universidad

uc3m

Polarity, melting, and boiling points

 \checkmark The first four alkanes are gases at room temperature, and solids do not begin to appear until about C₁₇H₃₆, but this is imprecise because different isomers typically have different melting and boiling points.

Cycloalkanes have boiling points that are approximately 20 K higher than the corresponding straight chain alkane

Solubility

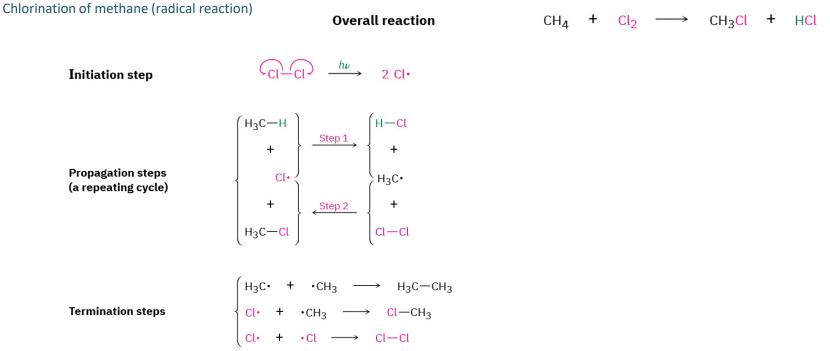
✓ Alkanes (nonpolar) are insoluble in water (polar), and since they are less dense than water, they float (e.g., oil slicks).

✓ Alkanes and other substances that do not dissolve in water are often referred to as being hydrophobic ("water fearing").

Chemical properties of Alkanes (Paraffins)

✓ Alkanes are *not very reactive* because of its bonding:

Four covalent bonds \Rightarrow Four σ bonds \Rightarrow Higher stability


Examples of reactions with alkanes:

Universidad Carlos III de Madrid

Combustion

uc3m

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ $\Delta H = -890 \text{ kJ/mol}$

Chemical properties of Alkanes (Paraffins)

✓ Alkanes are *not very reactive* because of its bonding:

Four covalent bonds \Rightarrow Four σ bonds \Rightarrow Higher stability

✓ Alkanes are *less dense* than water.

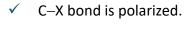
✓ Alkanes are *non-polar solvents*

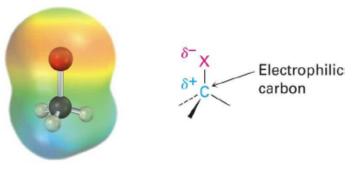
✓ Alkanes are *not miscible* in water:

Weak dipole-dipole bonds \Rightarrow They can not break the strong H-O bond in H_2O

✓ From Methane to Butane are *very flammable gases* at STP. Pentane is an *extremely flammable liquid*.

HALOALKANES


uc3m

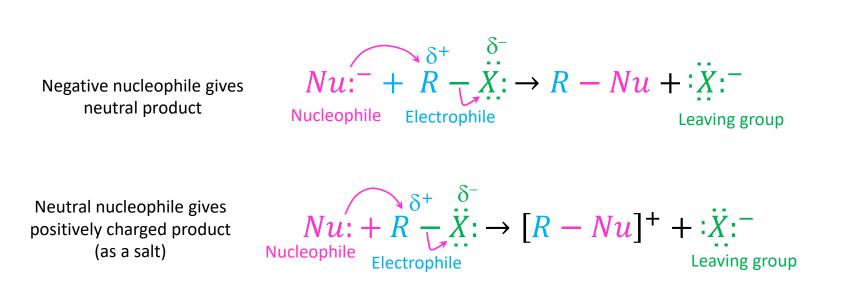

Universidad Carlos III de Madrid

✓ Bond strength of C−X decreases as the size of X increases.

Short bonds are stronger than longer bonds

A Comparison of the Halomethanes					
Halomethane	Pand longth (nm)	Bond strength		Dinala mamont (D)	
Halomethane	Bond length (pm)	(kJ/mol) (kcal/mol)		- Dipole moment (D)	
CH ₃ F	139	460	110	1.85	
CH₃Cl	178	350	84	1.87	
CH ₃ Br	193	294	70	1.81	
CH3I	214	239	57	1.62	

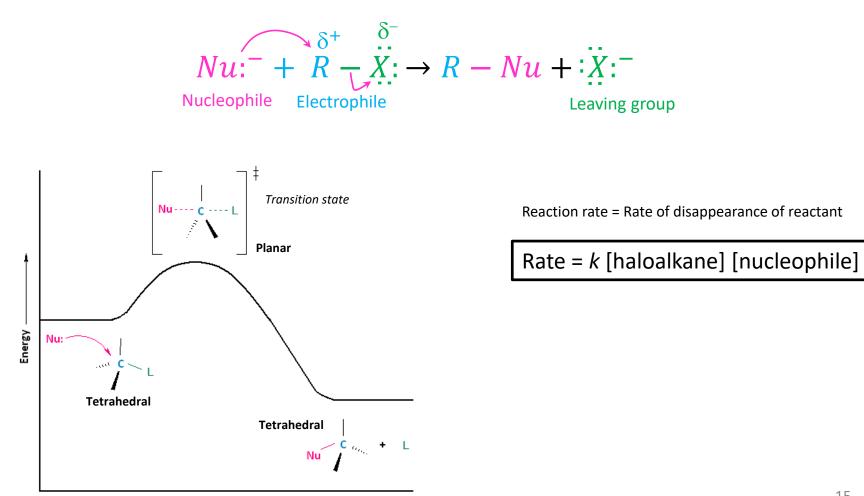
✓ Boiling points higher than the corresponding alkanes.


- ✓ Coulombic attraction (dipole-dipole interaction)
- ✓ Polarizability

HALOALKANES

Nucleophilic Substitution: two mechanisms

$$R - X + Nu: \rightarrow R - Nu + X:$$


The $S_N 2$ reaction

HALOALKANES

uc3m

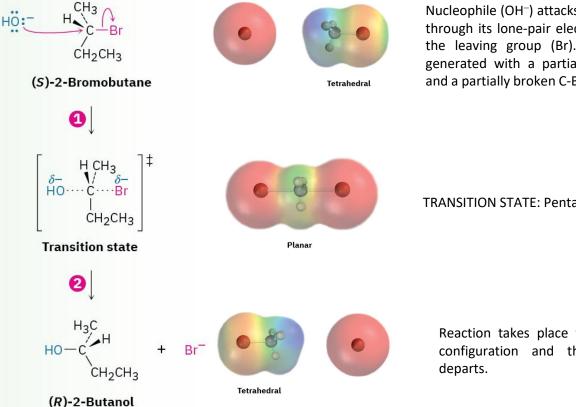
Universidad Carlos III de Madrid

This mechanism is designated **S_N2**, where S stands for Substitution, N for Nucleophilic, and 2 for a **bimolecular reaction**

HALOALKANES

$S_N 2$: Inversion of the configuration

The reversal of the arrangement of atoms or groups of atoms about a reaction center in a $S_N 2$ reaction.


Frontside or Backside attack?

Reaction:

 $CH(CH_3)(CH_2CH_3)Br + OH^- \rightarrow CH(CH_3)(CH_2CH_3)OH + Br^-$

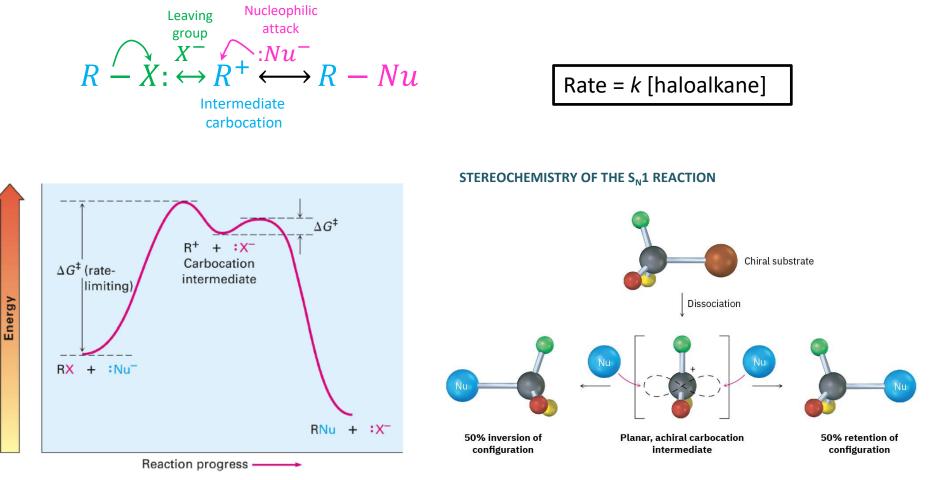
Mechanism:

STEREOSPECIFIC REACTION

Nucleophile (OH⁻) attacks the alkyl halide carbon through its lone-pair electrons, 180° away from the leaving group (Br). A transition state is generated with a partially formed C-OH bond and a partially broken C-Br bond.

TRANSITION STATE: Pentacoordinated carbon

Reaction takes place with an inversion of the configuration and the leaving group (Br⁻)


HALOALKANES

uc3m

Universidad Carlos III de Madrid

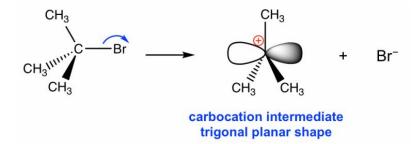
The S_N1 Reaction

This mechanism is designated $S_N 1$, where S stands for Substitution, N for Nucleophilic, and 1 for an *unimolecular reaction*

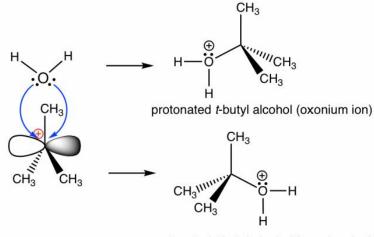
The S_N1 Reaction

HALOALKANES

Universidad Carlos III


Mechanism

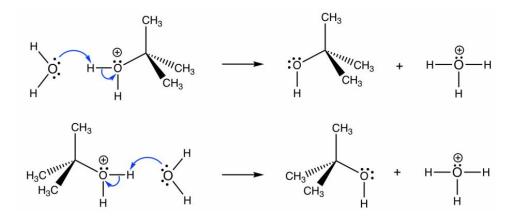
uc3m


Reaction:

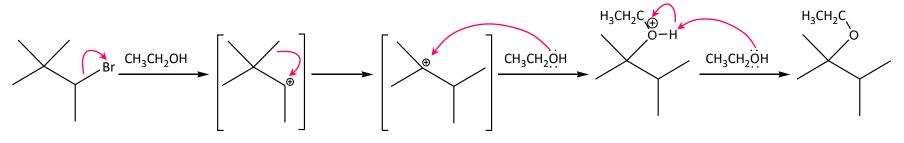
 $(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$

Step 1: The ionization of a C–X bond forms slowly a tertiary carbocation intermediate. Step 1 is the rate-determining step.

Step 2: Rapid reaction of a nucleophile and an electrophile to form a new covalent bond. H2O attacks from both sides of the planar tertiary carbocation.



HALOALKANES


The $S_N 1$ Reaction

Mechanism

Step 3: Take a proton away. Rapid deprotonation to produce a neutral final product.

Rearrangement to form a more stable carbocation:

HALOALKANES

What determines whether $S_N 1$ or $S_N 2$ predominates?

A. Structure of the Nucleophile

- > The better the nucleophile \Rightarrow the more likely S_N2 reaction
- S_N1 reaction occur at approximately the same rate with any of the common nucleophiles, regardless of their relative nucleophilicities. The nucleophile can't affect the reaction rate.

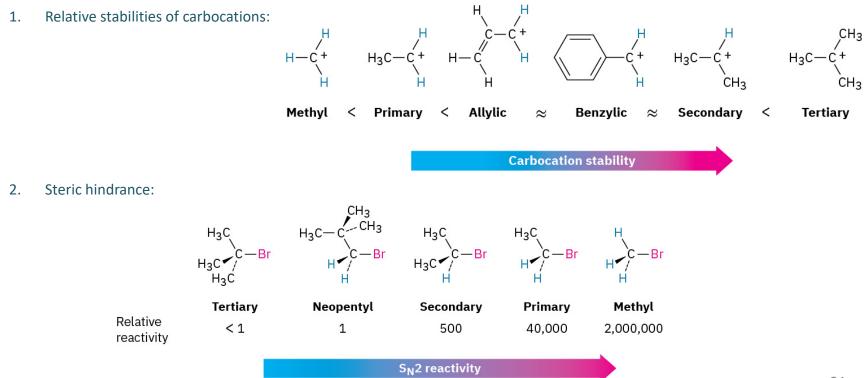
Effectiveness as a Nucleophile

Increasing nucleophilicity	

Good	Br—, I— CH ₃ S—, RS— OH—, CH ₃ O—, RO—
Moderate	Cl [–] , F [–] CH₃COO [–] , RCOO [–] CH₃SH, RSH, R₂S NH₃, RNH₂, R₂NH, R₃N
Poor	H₂O CH₃OH, ROH CH₃COOH, RCOOH

Nucleophile

- ✓ Vegatively charged species are better nucleophiles than neutral species.
- Nucleophilicity decreases across a period.
- Smaller group is better nucleophile than bulky group.


HALOALKANES

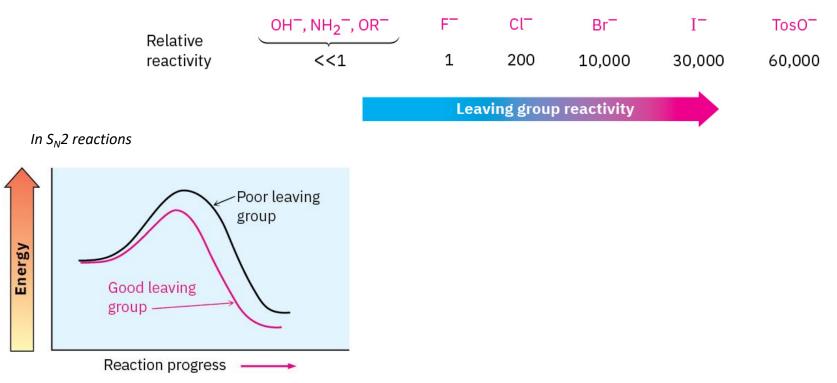
What determines whether $S_N 1$ or $S_N 2$ predominates?

B. Structure of the Haloalkane

 $S_N 1$ reactions \Rightarrow *electronic factors* \Rightarrow the relative stabilities of carbocation intermediates

 $S_N 2$ reactions \Rightarrow steric factors

uc3m Universidad Carlos III de Madrid

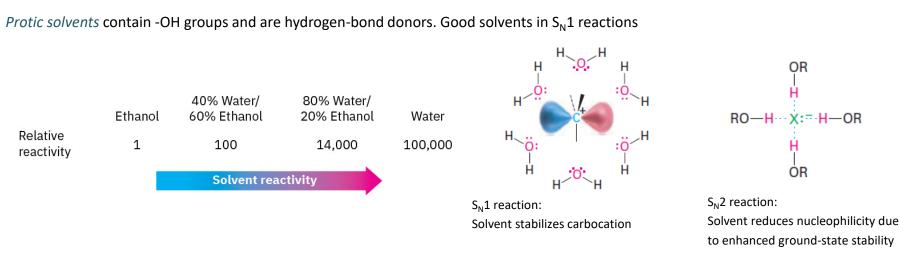

1.2. Haloalkanes

HALOALKANES

What determines whether $S_N 1$ or $S_N 2$ predominates?

C. The leaving group

The halogens Cl⁻, Br⁻, and l⁻ make good leaving groups because their size and electronegativity help to stabilize the resulting negative charge.


HALOALKANES

Universidad

What determines whether $S_N 1$ or $S_N 2$ predominates?

C. The Solvent

uc3m

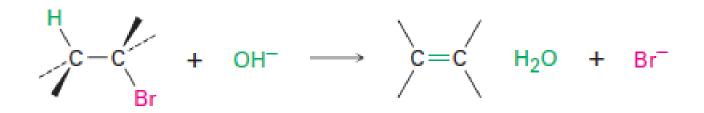
Aprotic solvents Good solvents for in $S_N 2$ reactions and they cannot be used in $S_N 1$ reactions.

			Solvent rea	ctivity		
Relative reactivity	1	7	1300	2800	5000	200,000
Solvent	CH ₃ OH	H ₂ 0	DMSO	DMF	CH ₃ CN	HMPA

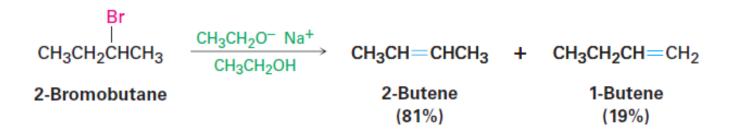
HALOALKANES

What determines whether $S_N 1$ or $S_N 2$ predominates?

SUMMARY OF S_N1 versus S_N2 REACTION OF HALOALKANES


Reaction Parameter	S _N 2	S _N 1
alkyl halide structure	methyl > primary > secondary >>>> tertiary	tertiary > secodary >>>> primary > methyl
nucleophile	high concentration of a strong nucleophile	poor nucleophile (often the solvent)
mechanism	1-step	2-stp
rate limiting step	bimolecular transition state	carbocation formation
rate law	rate = k[R-X][Nu]	rate = $k[R-X]$
stereochemisty	inversion of configuration	mixed configuration
solvent	polar aprotic	polar protic

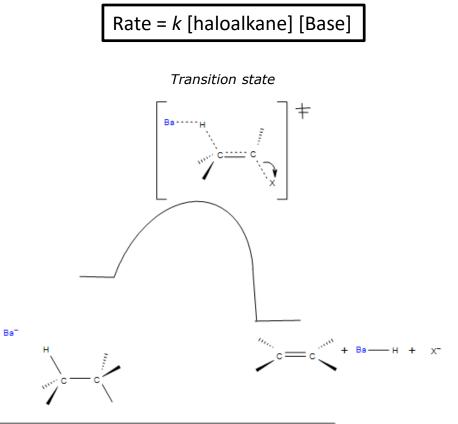
HALOALKANES


uc3m

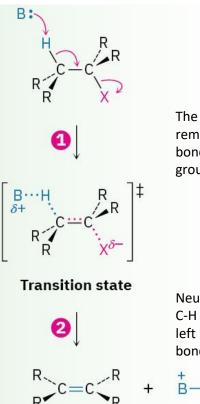
Universidad Carlos III de Madrid

Regiochemistry: Zaitsev's Rule. The more highly substituted alkene product predominates.

uc3m Universidad Carlos III de Madrid


The E2 Mechanism

This mechanism is designated **E2**, where *E* stands for *Elimination* and 2 for a *bimolecular reaction*.


Haloalkane is treated with a strong base

Reaction coordinate

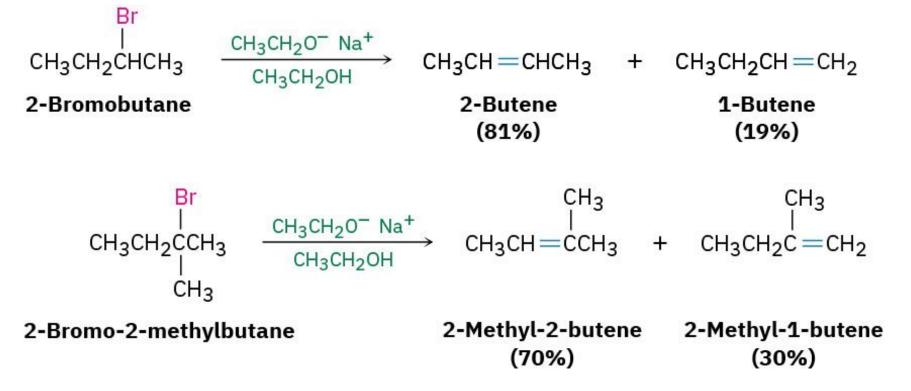
HALOALKANES

C-H and C-X bonds break simultaneously, giving the alkene in a single step without intermediates.

The base attacks a H and begins to remove it while the alkene double bond starts to be formed and the X group leaves.

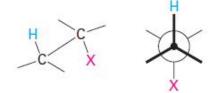
Neutral alkene is formed when the C-H bond is broken and X group has left with the electron pair of the bond.

⁺_B-H + :X⁻

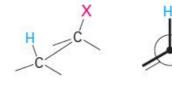


 Universidad Carlos III de Madrid

 HALOALKANES

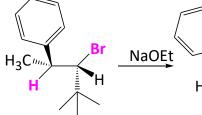

 Regioselectivity of E2 – Zaitsev's Rule

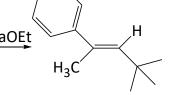
 Examples:

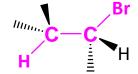

Stereoselectivity of E2

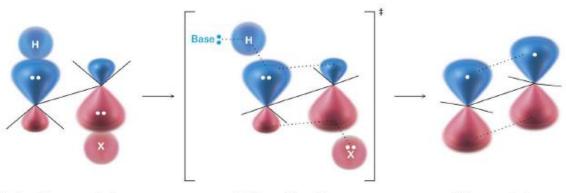
HALOALKANES

Anti periplanar geometry (staggered, lower energy)

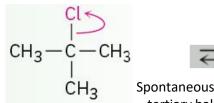





Syn periplanar geometry (eclipsed, higher energy)

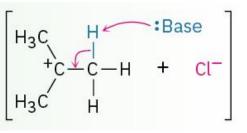


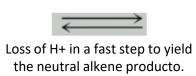
These four atoms (H-C-C-Br) must all lie in the same plane



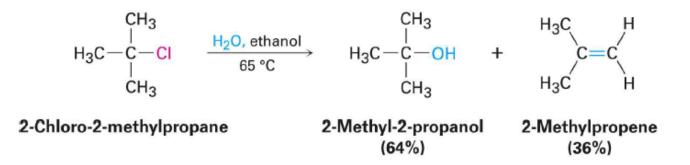
uc3m Universidad Carlos III de Madrid

HALOALKANES


The E1 Mechanism


This mechanism is designated E1, where E stands for Elimination and 1 for an unimolecular reaction.

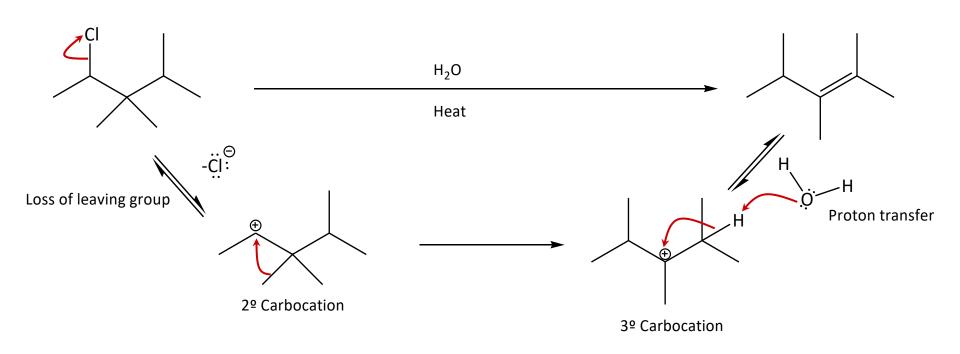
Spontaneous dissociation of the tertiary haloalkane yields an tertiary intermediate carbocation in a slow rate-limiting step.


 $\overset{CH_3}{\overset{}}\overset{H}{\overset{}}_{C=C}$

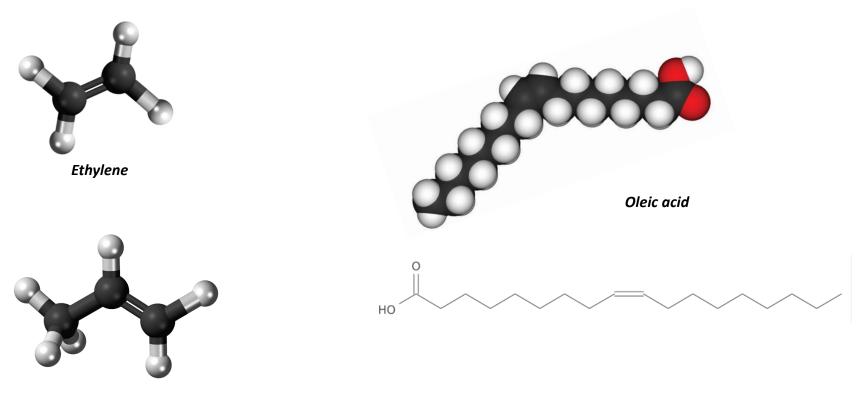
1.2. Haloalkanes

No stereoselectivity

Regioselectivity: Zaitsev's Rule \Rightarrow the most stable product

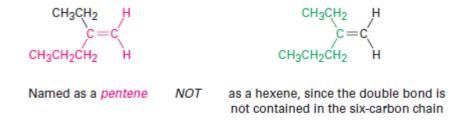

The best E1 substrates are also the best $\rm S_N1$ substrates \Rightarrow Mixture of products

HALOALKANES

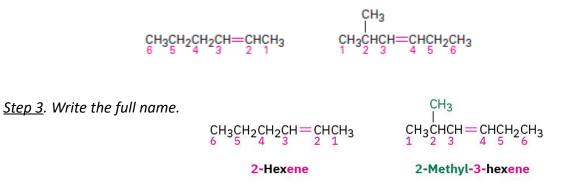

Carbocation Rearrangement during E1

Introduction

Alkene: hydrocarbon that contains a carbon-carbon double bond.

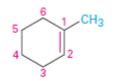


Propylene

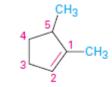


Naming Alkenes

<u>Step 1</u>. Name the parent hydrocarbon. Find the longest carbon chain containing the double bond, and name the compound accordingly, using the suffix -ene:

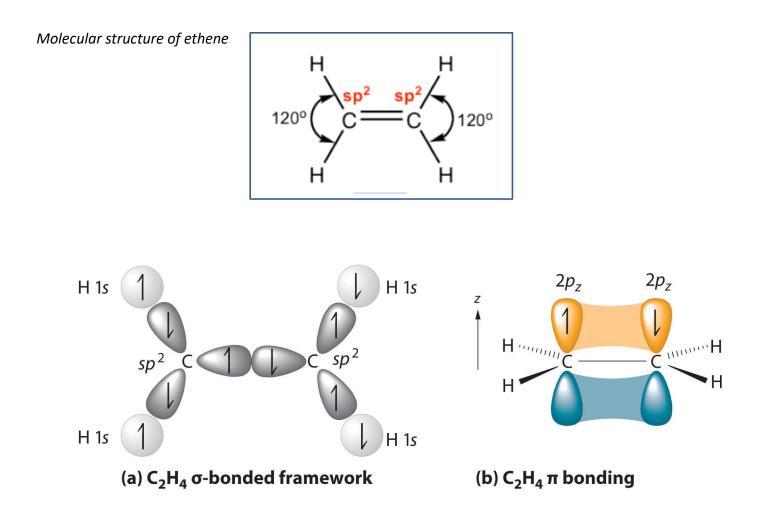


<u>Step 2</u>. Number the carbon atoms in the chain. Begin at the end nearer the double bond or, if the double bond is equidistant from the two ends, begin at the end nearer the first branch point. This rule ensures that the double bond carbons receive the lowest possible numbers


Cycloalkenes: the double bond is between C1 and C2 and the first substituent has as low a number as possible. It's not necessary to indicate the position of the double bond in the name because it's always between C1 and C2.

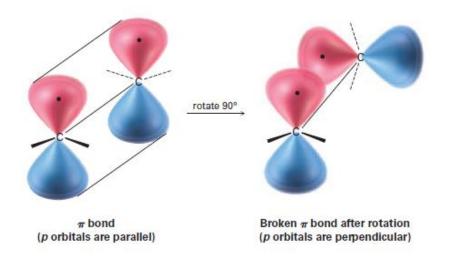
1-Methylcyclohexene

1,4-Cyclohexadiene (New: Cyclohexa-1,4-diene)

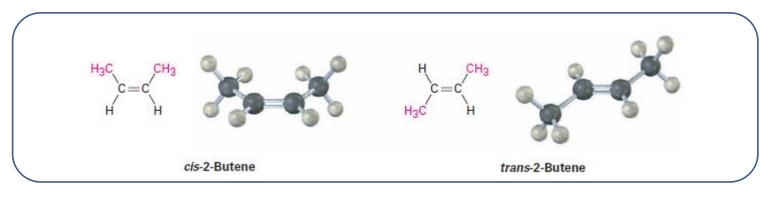

1,5-Dimethylcyclopentene

Substituents:

$$\begin{array}{ccc} H_2 C \rightleftharpoons & H_2 C = C H \rightleftharpoons & H_2 C = C H - C H_2 \rightleftharpoons & H_2 C = C H - C H_2 \rightleftharpoons & H_2 C = C H - C H_2 \leftrightarrow & H_2 H_2 \to & H_2 H_2$$



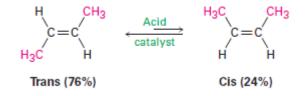
Structure and Bonding in Ethene



uc3m Universidad Carlos III de Madrid

Cis-Trans Isomerism in Alkenes

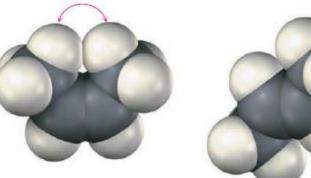
The π bond must break for rotation to take place around a carbon–carbon double bond.


Substituents on the same side of the double bond is called **cis-2-butene**

Substituents on opposite sides is trans-2- butene

Stability of Alkenes

trans-2-Butene

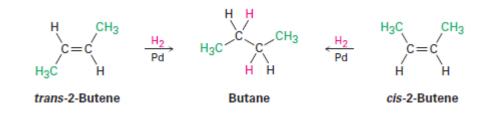


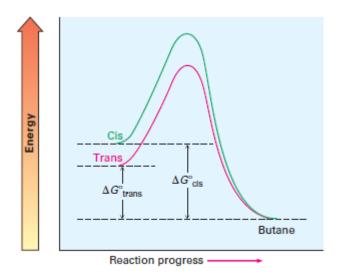
The **trans isomer** is more stable than the cis isomer by 2.8 kJ/mol (0.66 kcal/mol) at room temperature, corresponding to a 76:24 ratio.

Universidad Carlos III de Madrid

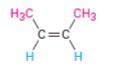
uc3m

cis-2-Butene

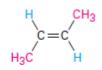

two larger substituents on the same side of the double bond


Cis alkenes are less stable than their trans isomers because of steric strain between the

uc3m Universidad Carlos III de Madrid


2. Alkenes

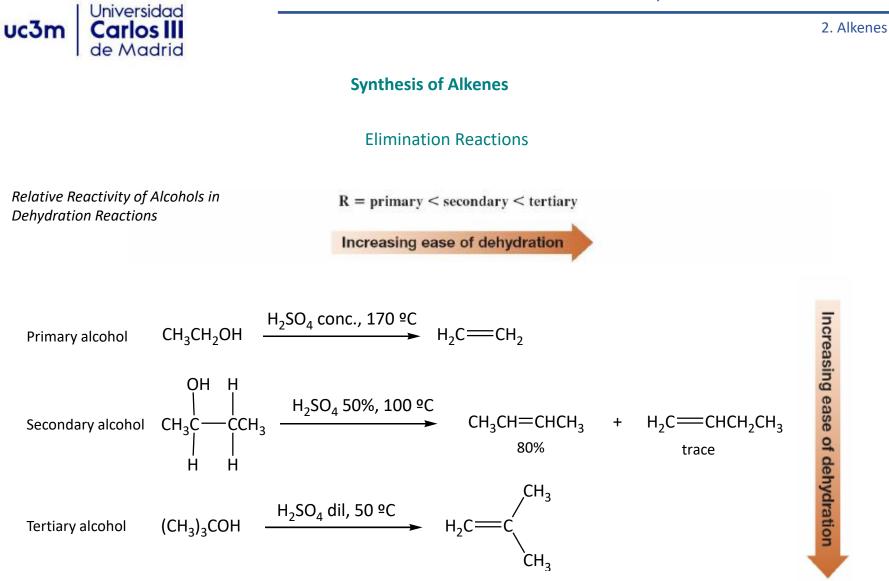
Stability of Alkenes: Hydrogenation



Energy diagrams for hydrogenation of cis- and trans-2butene. The cis isomer is higher in energy than the trans isomer by about <u>2.8 kJ/mol</u> and therefore releases more energy in the reaction.

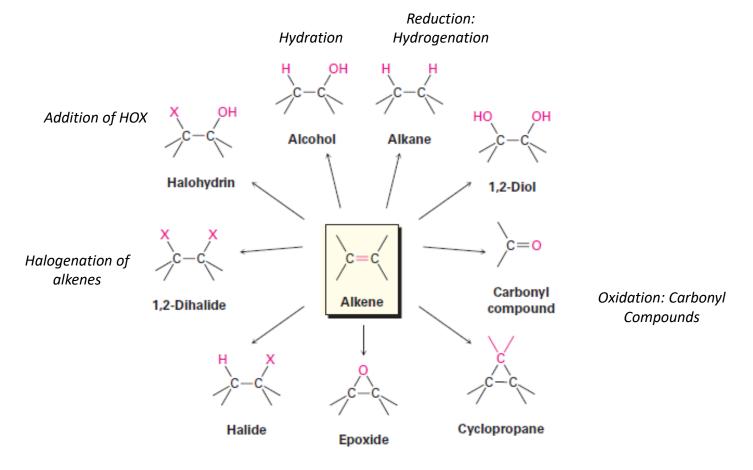
Cis isomer $\Delta H^{\circ}_{hydrog} = -120 \text{ kJ/mol}$

Trans isomer $\Delta H^{\circ}_{hydrog} = -116 \text{ kJ/mol}$


Physical Properties of Alkenes

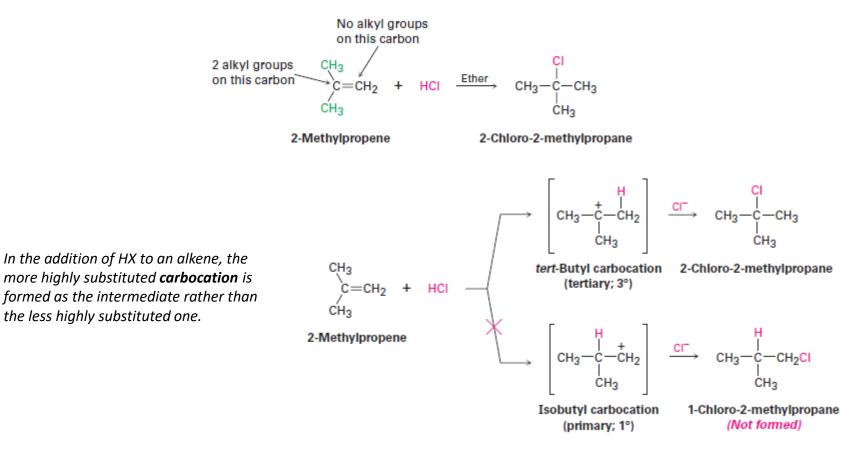
Comparison of Melting Points of Alkenes and Alkanes

-

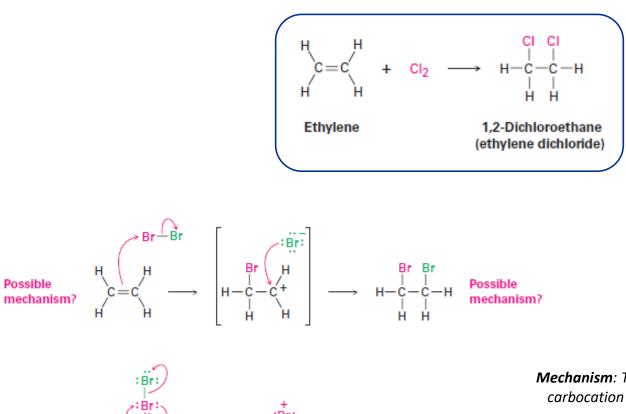

Compound	Melting point (°C)
Butane	-138
trans-2-Butene	-106
<i>cis</i> -2-Butene	-139
Pentane	-130
trans-2-Pentene	-135
<i>cis</i> -2-Pentene	-180
Hexane	-95
trans-2-Hexene	-133
<i>cis</i> -2-Hexene	-141
trans-3-Hexene	-115
cis-3-Hexene	-138

The double bond in **cisdisubstituted alkenes** imposes a U-shaped bend in the molecule that disrupts packing and reduces the melting point.

Reactivity of Alkenes


Oxidation: Epoxidation

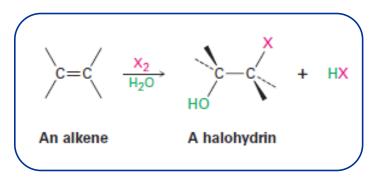
Orientation of Electrophilic Additions: Markovnikov's Rule


Markovnikov's Rule: In the addition of HX to an alkene, the H attaches to the carbon with fewer alkyl substituents and the X attaches to the carbon with more alkyl substituents

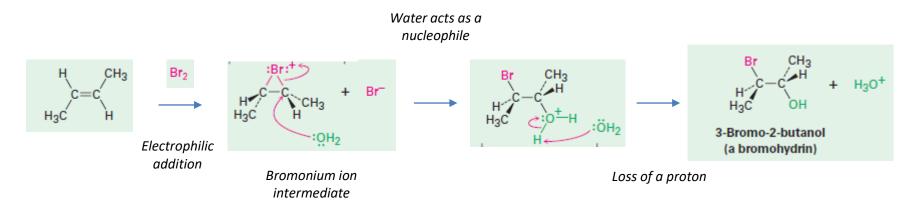
uc3m Universidad Carlos III de Madrid

An alkene

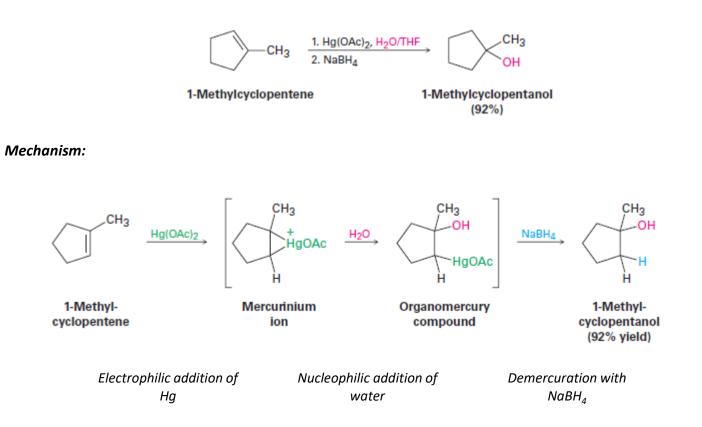
Halogenation of Alkenes: Addition of X₂


:Br:

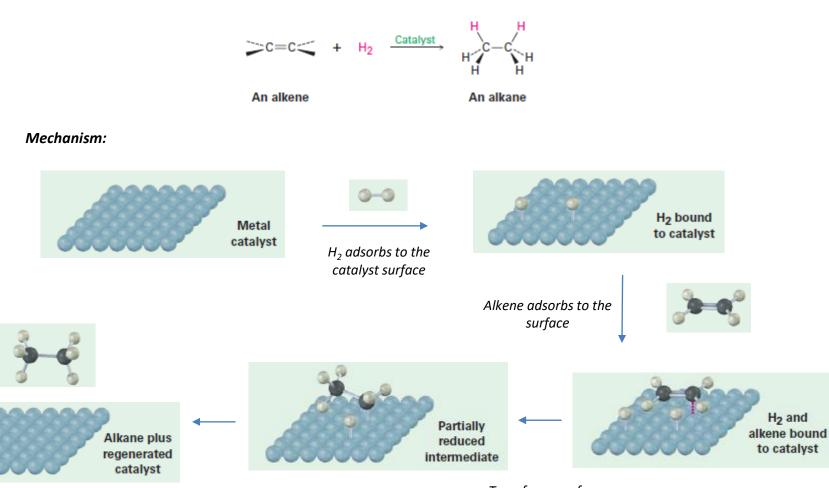
A bromonium ion


Mechanism: The reaction intermediate is not a carbocation but is instead a bromonium ion

Halohydrins from Alkenes: Addition of XOH

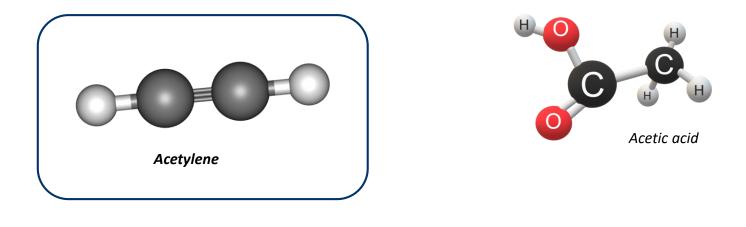


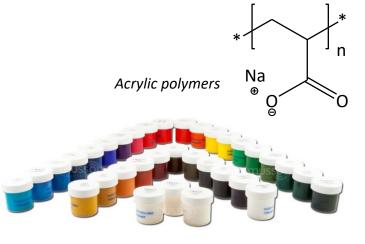
Mechanism:



Hydration of Alkenes: Addition of H₂O by Oxymercuration

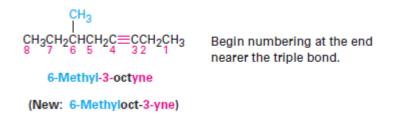
Reduction of Alkenes: Hydrogenation




Introduction

Alkyne: hydrocarbon that contains a carbon-carbon triple bond.

Oxy-Acetylene Gas Welding



Naming Alkynes

<u>Step 1</u>. Name the parent hydrocarbon. Find the longest carbon chain containing the triple bond, and name the compound accordingly, using the suffix -yne:

<u>Step 2</u>. Number the carbon atoms in the chain. Begin at the end nearer the triple bond. This rule ensures that the triple bond carbons receive the lowest possible numbers

<u>Step 3</u>. Write the full name. If more than one triple bond is present, indicate the position of each and use one of the suffixes - diyne, -triyne, and so on.

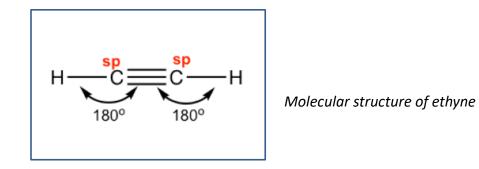
Substituents: As with alkyl and alkenyl substituents derived from alkanes and alkenes, respectively, alkynyl groups are also possible.

CH₃CH₂CH₂CH₂→

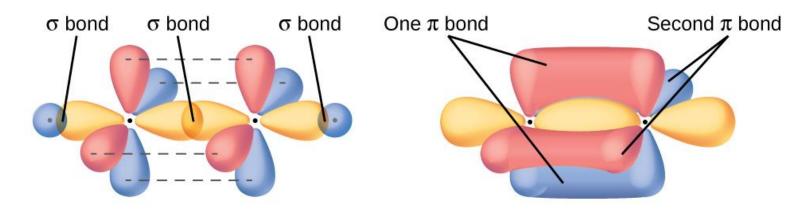
CH₃CH₂CH=CH-

сн₃сн₂с≡с-

Butyl (an alkyl group)


1-Butenyl (a vinylic group) 1-Butynyl (an alkynyl group)

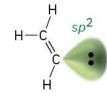
(New: But-1-enyl)


(New: But-1-ynyl)

Structure and Bonding in Ethyne

sp hybridization

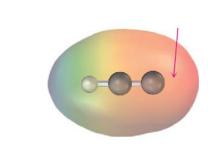
Physical Properties of Alkynes


Acidity of Alkynes

$$R-C \equiv C - H + : NH_2 Na^+ \longrightarrow R-C \equiv C: Na^+ + : NH_3$$

Acetylide anion

Alkyl anion 25% s



Vinylic anion 33% s

Stability

Acetylide anion 50% s

Acidity of Simple Hydrocarbons						
Family	Example	Κα	p <i>K</i> α			
Alkyne	HC≡CH	10 ⁻²⁵	25	Stronger acid		
Alkene	$H_2C = CH_2$	10 ⁻⁴⁴	44			
Alkane	CH ₄	10 ⁻⁶⁰	60	Weaker acid		

1,2-Diphenylethylene (stilbene) 1,2-Dibromo-1,2-diphenylethane (a vicinal dibromide)

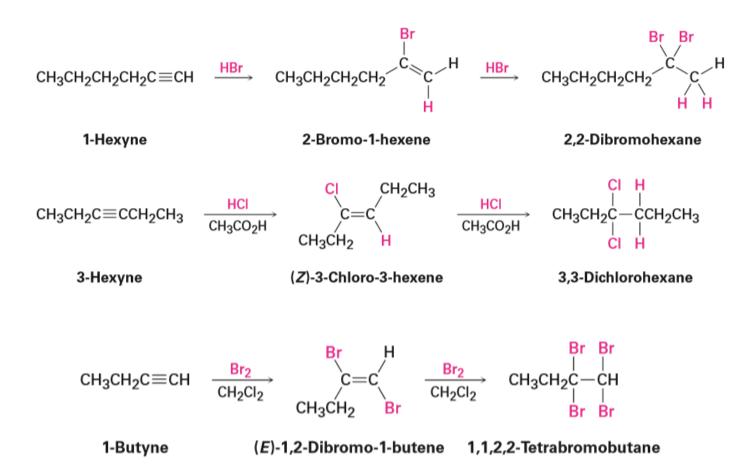
2 KOH, ethanol

C

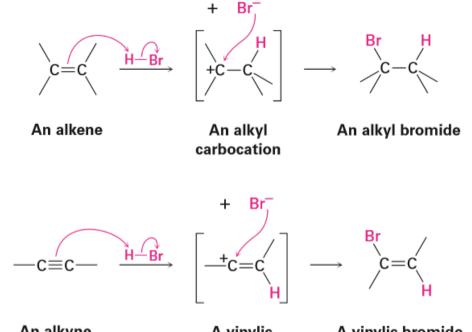
+ 2 H₂O + <mark>2 KB</mark>r

Formation of alkynes Halogenation/dehydrohalogenation

Universidad Carlos III de Madrid

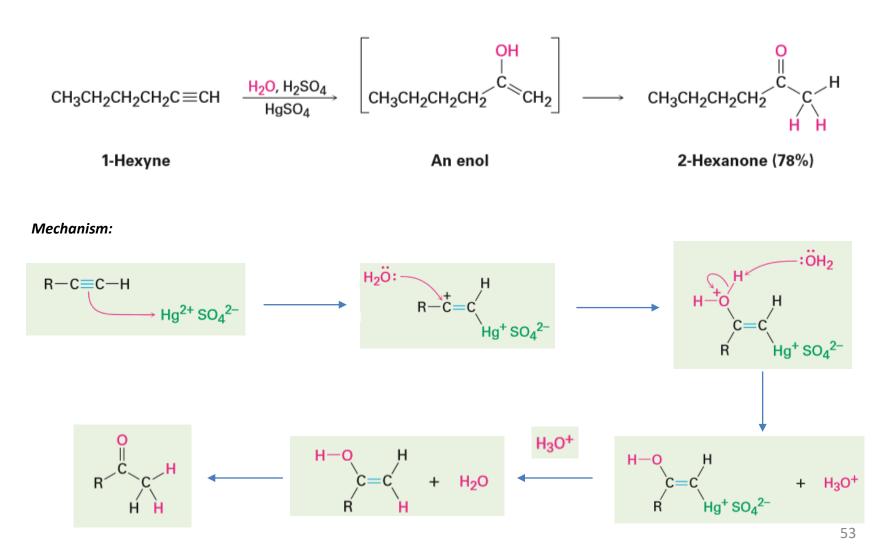

uc3m

Diphenylacetylene (85%)


Reactivity of Alkynes

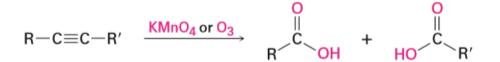
Addition of HX and X₂

Mechanism:


An alkyne

A vinylic carbocation

A vinylic bromide

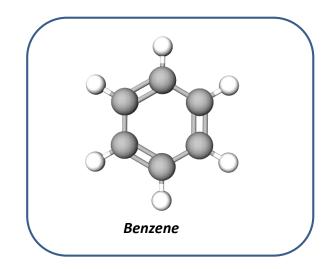

Reduction of Alkynes

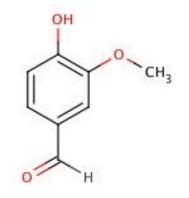
$$HC \equiv CH \xrightarrow{H_2} H_2C = CH_2 \qquad \Delta H^{\circ}_{hydrog} = -176 \text{ kJ/mol} (-42 \text{ kcal/mol}) \qquad Reduction \text{ to alkenes}$$

 $H_2C = CH_2 \xrightarrow{H_2} CH_3 - CH_3 = -137 \text{ kJ/mol} (-33 \text{ kcal/mol})$

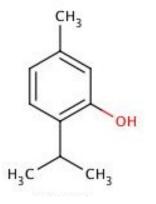
Oxidative Cleavage of Alkynes

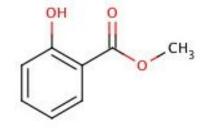
An internal alkyne


Oxidation to carboxylic acids


A terminal alkyne

$$R-C \equiv C-H \xrightarrow{KMnO_4 \text{ or } O_3} \xrightarrow{O}_{R} + O = C = O$$

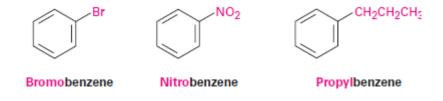

Introduction


Vanillin

Thymol

Methyl salicylate (wintergreen)

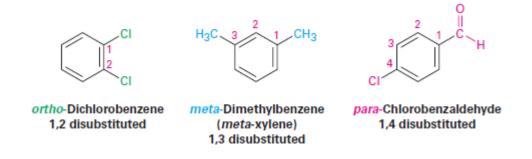
Naming Aromatic Compounds


uc3m Universidad Carlos III de Madrid

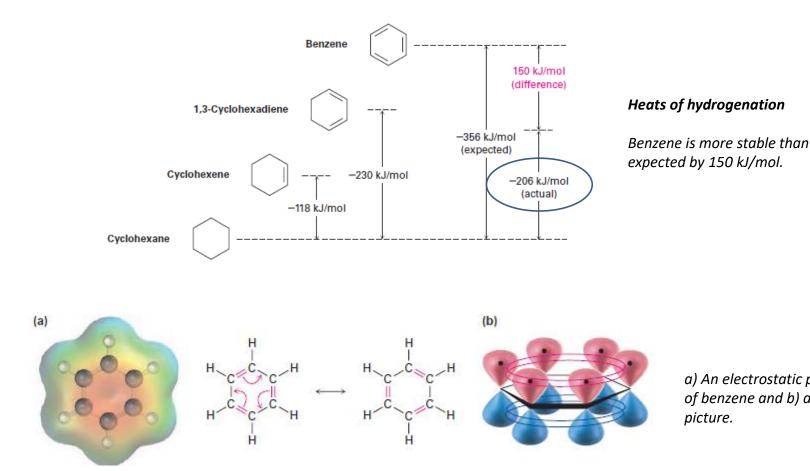
Common Names of Some Aromatic Compounds


Structure	Name	Structure	Name
CH3	Toluene (bp 111 °C)	СНО	Benzaldehyde (bp 178 °C)
ОН	Phenol (mp 43 °C)	CO ₂ H	Benzoic acid (mp 122 °C)
NH ₂	Aniline (bp 184 °C)	CH3 CH3	ortho-Xylene (bp 144 °C)
C CH3	Acetophenone (mp 21 °C)	H C C H H	Styrene (bp 145 °C)

1. **Monosubstituted benzenes** are named systematically in the same manner as other hydrocarbons, with <u>-</u><u>benzene</u> as the parent name.

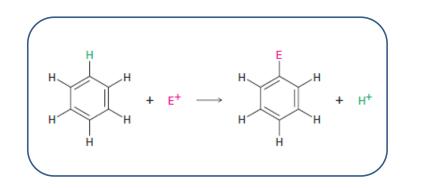


2. **Alkyl-substituted** benzenes are sometimes referred to as arenes and are named in different ways depending on the size of the alkyl group. The name phenyl, sometimes abbreviated as Ph or F (Greek phi), is used for the - C_6H_5 unit when the benzene ring is considered as a substituent.


3. Disubstituted benzenes are named using one of the prefixes ortho (o), meta (m), or para (p).

4. Benzenes with **more than two substituents** are named by choosing a <u>point of attachment as carbon 1</u> and numbering the substituents on the ring so that the second substituent has as low a number as possible.

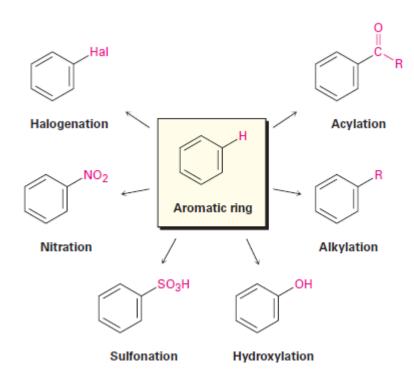
Stability of benzene


Universidad Carlos III de Madrid

uc3m

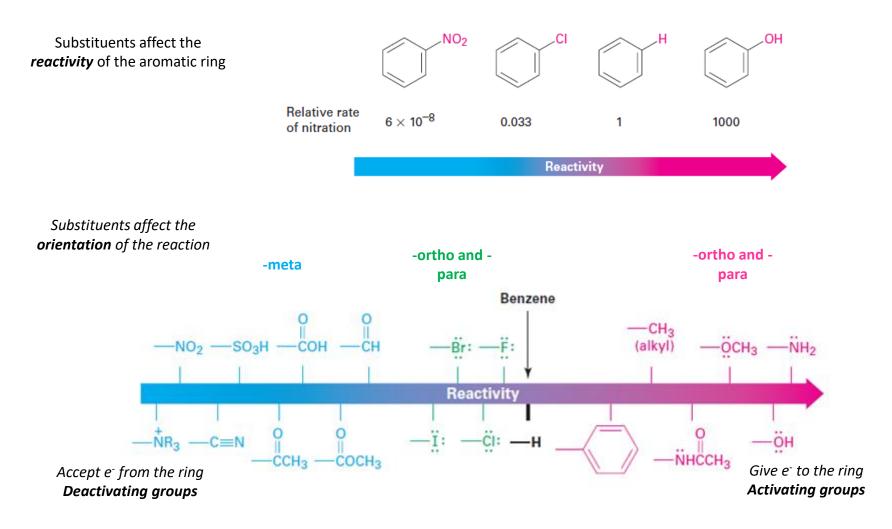
a) An electrostatic potential map of benzene and b) an orbital picture.

Reactivity


Electrophilic Aromatic Substitution

Universidad Carlos III de Madrid

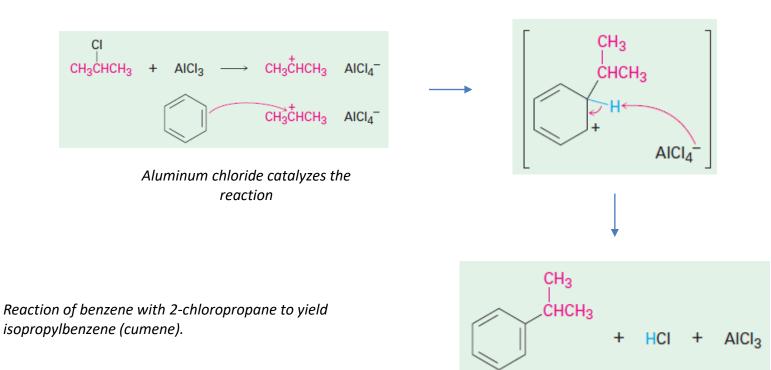
uc3m


An electrophile (E) reacts with an aromatic ring and substitutes for one of the hydrogens

Substituent Effects in Electrophilic Substitutions

Universidad Carlos III de Madrid

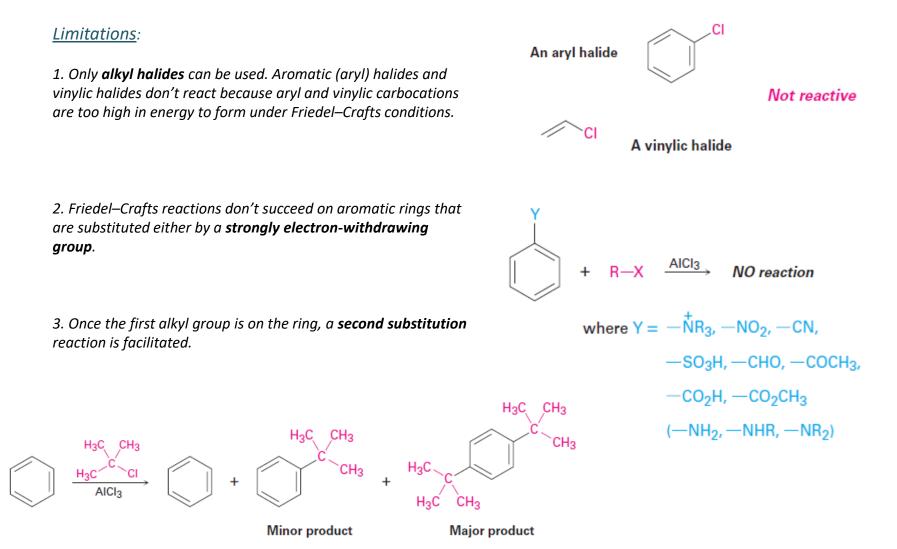
uc3m


A Summary of Substituent Effects in Aromatic Substitution

Substituent		Reactivity	Orienting effect	Inductive effect	Resonance effect
-CH ₃	i	Activating	Ortho, para	Weak donating	-
-OH, -NH ₂		Activating	Ortho, para	Weak withdrawing	Strong donating
−F, −Cl −Br, −I	}	Deactivating	Ortho, para	Strong withdrawing	Weak donating
-NO ₂ , -CN, -CHO, -CO ₂ R -COR, -CO ₂ H		Deactivating	Meta	Strong withdrawing	Strong withdrawing

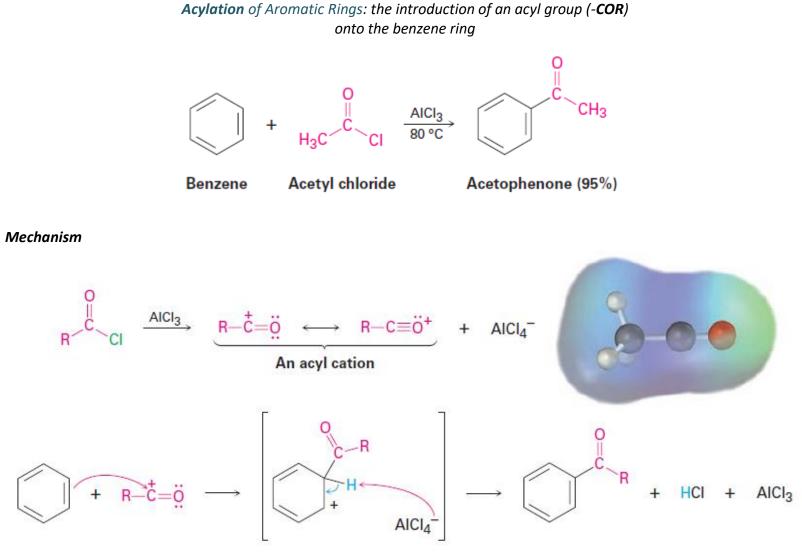
Reactivity Position of the substituent in the ring

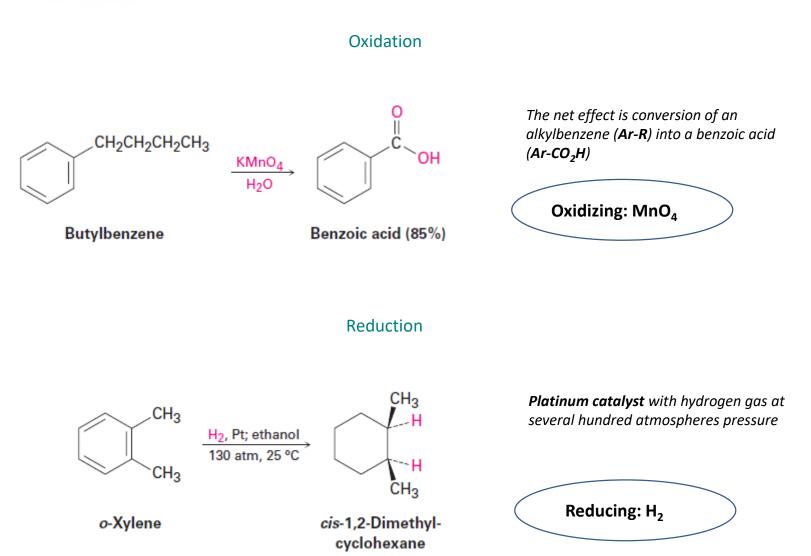
Alkylation and Acylation of Aromatic Rings: The Friedel-Crafts Reaction


Alkylation of Aromatic Rings: the introduction of an alkyl group (-**R**) onto the benzene ring

Mechanism

63





Universidad

uc3m

uc3m Universidad Carlos III de Madrid

Universidad Carlos III de Madrid

uc3m

Image Credits

Slide 3:

• Structure of alkanes: 1840460mahesh, CC BY-SA 4.0, <u>https://commons.wikimedia.org/wiki/File:Alkane_4_structure.jpg</u>.

Slides 3 (table), 4-9, 11, 13, 16, 17, 21-23, 25, 26-29, 32, 33, 35-37, 40-45, 47, 49-54, 56-66:

• Organic Chemistry. A tenth Edition. John McMurry, Cornell University (Emeritus), CC BY-SA 4.0, <u>https://openstax.org/details/books/organic-chemistry</u>.

Slides 10, 15 (graph), 24 (table), 26 (graph), 34 (σ and π bonds), 48 (sp hybridization):

 Chem 12A: Organic Chemistry Fall 2022. Andy Wells, Chabot College, Open Education Resource (OER) LibreTexts Project, <u>https://chem.libretexts.org/Courses/Chabot_College/Chem_12A: Organic_Chemistry_Fall_2022</u>.

Slides 14, 15, 19 (rearrangement), 28 (example), 30, 39, 47 (acrylic polymers structure):

• Images made by the authors.

Slides 18, 19, 34 (ethene structure), 49 (ethyne structure):

• Organic Chemistry I. Xin Liu. Kwantlen Polytechnic University, Surrey BC, CC BY-SA 4.0, <u>https://open.umn.edu/opentextbooks/textbooks/1119</u>.

Slide 31:

- Ethylene 3D structure: Claudio Pistilli, CC0 1.0, https://eo.wikipedia.org/wiki/Dosiero:Ethylene_3D_2.png.
- Propylene 3D structure: Claudio Pistilli, CC0 1.0, https://eo.m.wikipedia.org/wiki/Dosiero:Propylene 3D_2.png.
- Oleic acid structure: 3D structure, CNX OpenStax, CC BY 4.0, <u>https://commons.wikimedia.org/wiki/File:Figure_02_03_05.jpg</u>; bond-line structure, Johannes Botne, CC BY-SA 3.0, <u>https://snl.no/oljesyre</u>.

Image Credits

Slide 46:

- Acetylene 3D structure: MarinaVladivostok, CC0 1.0, <u>https://commons.wikimedia.org/wiki/File:Acetylene_ball-and-stick.png</u>.
- Acetic acid 3D structure: Christinelmiller, CC BY-SA 4.0, https://commons.wikimedia.org/wiki/File:Vinegar_Acetic_Acid_CH3COOH.png.
- Oxy acetylene gas welding: Paul Anderson, CC BY 2.0, <u>https://commons.wikimedia.org/wiki/File:Oxy-Acetylene_welding_set.jpg</u>.
- Dyes (acrylic polymers): Chris Larson, CC BY-SA 4.0, https://www.musson.com/supersat-sample-kit.html.

Slide 55:

- Benzene 3D structure: Herman Bergwerf, CC0 1.0, https://ndla.no/subject:1:f18b0daa-6507-4025-8998-b8a11c8ccc70/topic:5:f604b380-5cdb-4227-885e-bc9b57cb3237/topic:98043c9d-c278-4bf2-bf0f-abff61c3d155/resource:be046bcc-74e1-4ef1-8450-370c6752882d.
- Vanillin, thymol, and methyl salicylate chemical structure: C5perez, CC0 1.0, <u>https://commons.wikimedia.org/wiki/File:Tast1.jpg</u>.
- Vanillin flower: pantherkatz, CC BY-ND 2.0, https://www.flickr.com/photos/17405338@N00/2201862437.
- Thymol leaves: US Department of Agriculture, CC BY 2.0, https://www.flickr.com/photos/usdagov/8411805215.
- Wintergreen: pl@ntnet, CC BY-SA 4.0, https://identify.plantnet.org/k-world-flora/species/Gaultheria%20procumbens%20L./data.