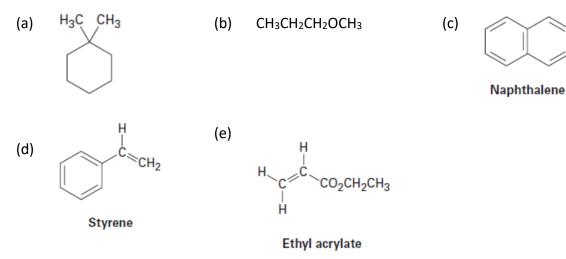
uc3m Universidad Carlos III de Madrid

OpenCourseWare (2023)

CHEMISTRY II

Verónica San Miguel Arnanz


Teresa Pérez Prior

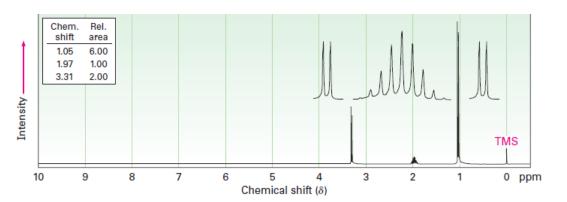
Berna Serrano Prieto

Department of Materials Science and Engineering and Chemical Engineering

EXERCISES OF STRUCTURAL DETERMINATION

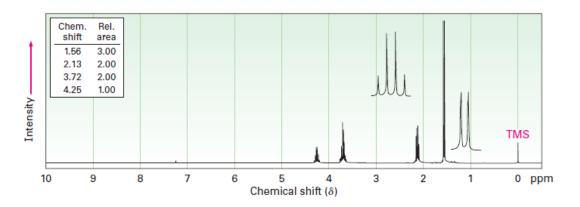
Exercice 1. How many types of non-equivalent protons are present in each of the following molecules?

Exercise 2. Structural Elucidation from ¹H NMR Spectra. There are several isomeric alcohols and ethers of molecular formula $C_5H_{12}O$. Two of these, A and B, exhibit the following ¹H NMR spectra:

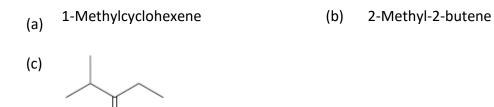

A: δ = 1.19 (s, 9 H), 3,21 (s, 3 H) ppm B: δ = 0.93 (t, 3 H), 1.20 (t, 3 H), 1.60 (sextet, 2 H), 3.37 (t, 2H), 3.47 (q, 2 H) ppm. Determine compounds A and B.

Exercise 3. An isomer of C₅H₁₂O exhibits the following ¹H NMR spectrum: δ = 0.92 (t, 3 H), 1.20 (s, 6 H), 1.49 (q, 2 H), 1.85 (br s, 1 H) ppm. Determine its structure.

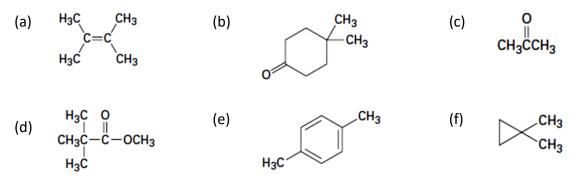
Exercise 4. Predict the splitting pattern for each kind of hydrogen in isopropyl propanoate, $CH_3CH_2CO_2CH(CH_3)_2$.

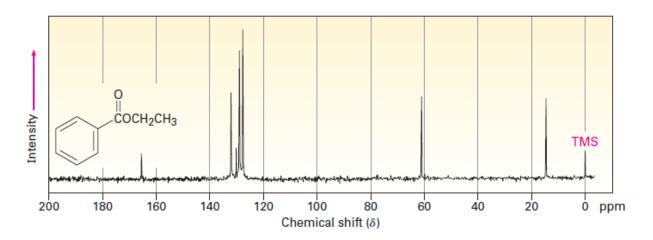

Exercise 5. Propose structures for the two compounds whose ¹H NMR spectra are shown:

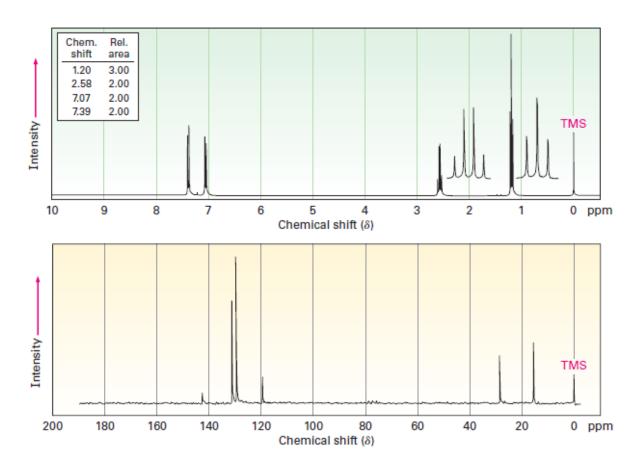
(a) C₄H₉Br



(b) C₄H₈Cl₂

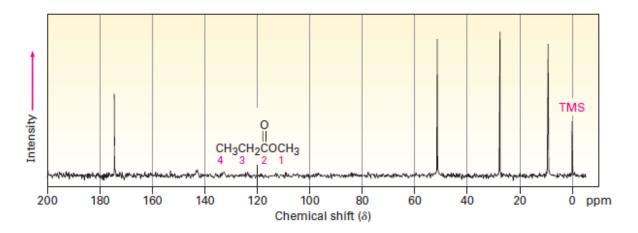

Ô


Exercise 6. Predict the number of carbon resonance lines you would expect in the ¹³C NMR spectra of the following compounds:


Exercise 7. How many signals would you expect each of the following molecules to have in its ¹H and ¹³C spectra?

Exercise 8. Assign as many of the resonances as you can to specific carbon atoms in the ¹³C NMR spectrum of ethyl benzoate.

Exercise 9. The ¹H and ¹³C NMR spectra of compound A, C₈H₉Br, are shown. Propose a structure for A and assign peaks in the spectra to your structure.

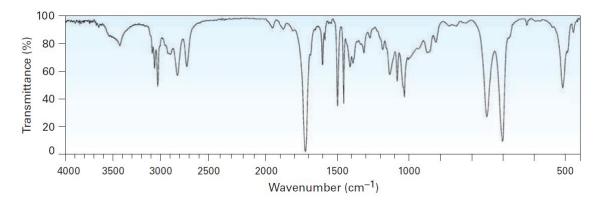

Exercise 10. Assume that you have a compound with formula C_3H_6O .

- (a) How many double bonds and/or rings does your compound contain?
- (b) Propose as many structures as you can that fit the molecular formula.
- (c) If your compound shows an infrared absorption peak at 1715 cm⁻¹, what functional group does it have?
- (d) If your compound shows a single ¹H NMR absorption peak at 2.1 δ , what is its structure?

Exercise 11. How could you use infrared spectroscopy to distinguish between the following pairs of isomers?

- (a) $HC \equiv CCH_2NH_2$ and $CH_3CH_2C \equiv N$
- (b) CH₃COCH₃ and CH₃CH₂CHO

Exercise 12. Assign the resonances in the ¹³C NMR spectrum of methyl propanoate, CH₃CH₂CO₂CH₃.


Exercise 13. Two compounds of molecular formula C_2H_6O show large intensity IR peaks at 2870 and 1150 cm⁻¹ for the first isomer, and at 3400, 2950, and 1090 cm⁻¹ for the second. What are their structures?

Exercise 14. How would you use infrared spectroscopy to distinguish between the following pairs of constitutional isomers?

(a) but-2-yne and but-1-yne; (b) pent-3-en-2-one and pent-4-en-2-one; (c) methoxyethene and propanal.

Exercise 15. Assume that you are carrying out the dehydration of 1-methylcyclohexanol to yields 1-methylcyclohexene. How could you use infrared spectroscopy to determine when the reaction is complete?

Exercise 16. The figure shows the IR spectrum of a compound with the formula C_8H_8O . What functional groups does the compound contain?

IMAGE CREDITS

- Images of exercises 5, 7-9, 12, and 16: Organic Chemistry. A tenth Edition. John McMurry, Cornell University (Emeritus), CC BY-SA 4.0, <u>https://openstax.org/details/books/organic-chemistry</u>.
- Images of exercises 1 and 6 were made by authors.