uc3m Universidad Carlos III de Madrid

OpenCourseWare (2023)

CHEMISTRY II

Verónica San Miguel Arnanz

Teresa Pérez Prior

Berna Serrano Prieto

Department of Materials Science and Engineering and Chemical Engineering

EVALUATION TEST 4

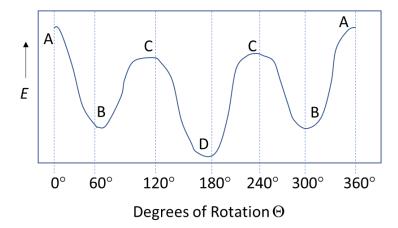
	points) Fill the spaces with the correct word/-s in the next statements. (Correct statements).	
Α	In the following cell: $Mg(s) \mid Mg^{2+}(0.1 M) \mid Mg^{2+}(0.5 M) \mid Mg(s)$ the more solution is reduced in the cathode.	
В	Given the following standard reduction potentials: $Ag^+/Ag = +0.80 \text{ V}$ and $Cl_2/Cl^- = +1.36 \text{ V}$ is a stronger oxidizing agent than	
С	is a type of corrosion which occurs when a tensile stress is applied on the material under a corrosive environment.	
D	A radical is stabilized by resonance and hyperconjugation (an electron interaction between a bond and a orbital).	
E	A S _N 2 reaction predominates in solvents, when a	
L	carbocation is formed, and the better the nucleophile is.	
F	Trans-disubstituted alkenes present a melting point than the	
•	corresponding <i>cis</i> -disubstituted	

	Given the following benz	oic acids:		
G		COOH NO ₂	COOH CH ₃	
		-		
	Compound I has	acidity tl	nan compound II, because nitro g	group is an
		group.		

Н	In an inhibition, the inhibitor can bind ONLY to enzymesubstrate complex, not to free enzyme.
I	Fatty acids are composed of a long hydrocarbon chain () ranging from 4 to 36 carbons long and a terminal group (head).

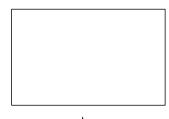
J	A nucleotide has three characteristic components: (1) a nitrogenous base, (2) a , and (3) one or more phosphates. The molecule without a phosphate
	group is called a

- 2. (1.5 points) Consider the electrolysis of an aqueous solution of KBr:
 - a) (1 p) Write the half-reactions and indicate the products formed at the anode and cathode.
 - b) (0.5 p) If the initial concentration of the salt (KBr in aqueous solution) is 0.5 M. Determine the pH of the medium after electrolysis.


Data: $E^{0}(K^{+}/K) = -2.93 \text{ V}; E^{0}(Br_{2}/Br^{-}) = +1.07 \text{ V}; E^{0}(O_{2}/H_{2}O, H^{+}) = +1.23 \text{ V}; E^{0}(H_{2}O/H_{2}, OH^{-}) = -0.83 \text{ V}.$

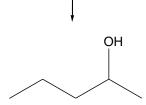
3. (1.75 points) Answer the following questions:

a) (0.75 p) Write the name including the absolute configuration of the following compounds. (**Hint**: when alcohol group is not the main functional group, that is denominated as "hydroxy-" before the name of the main chain)


1. OH 2.
$$NH_2$$
 3. CH_3 H_3C H_3C H_3C CH_2

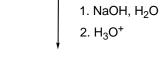
b) (1 p) Starting from the eclipsed conformation (A) for butane, draw and indicate the type of conformation using the Newman projections for B, C, D, and E according to the rotation of the C2–C3 bond indicated in the following graph. Deduce which of the structures is more stable and why.

- **4.** (2.25 points) Complete the following schemes:
 - a) (0.75 p)


Α

CH₃-MgBr

PBr₃


NaBH₄

Br Br

b) (0.75 p)

В

1. LiAlH₄

2.	H ₂ O

1. CH₃I exc

2. Ag₂O

3. OH-, Δ

+

c) (0.75 p)

C

$$\begin{array}{c|c} & & & \\ & & &$$

5. (1.5 points) A compound with the formula $C_3H_5BrO_2$ exhibits the following 1H -NMR, ^{13}C -NMR, and IR spectra, respectively:

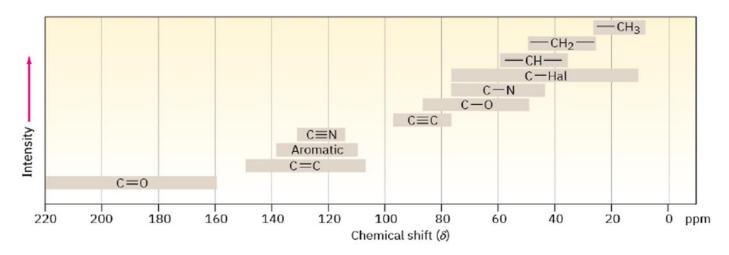
¹H-NMR: δ = 2.93 (t, 2 H), 3.57 (t, 2 H), >9.0 (low field,1 H very broad) ppm.

¹³C-NMR: δ = 24.3, 38.6, 178.6 ppm.

IR: characteristic bands 3067, 1717 cm⁻¹.

- a) (0.25 p) Determine the degree of unsaturation.
- b) (1.25 p) Justify its structure.

ANNEX


Chemical Shifts in ¹H NMR

Type of hydrogen	Chemical shift (δ)	
Reference	Si(CH ₃) ₄	0
Alkyl (primary)	-CH ₃	0.7-1.3
Alkyl (secondary)	-CH ₂ -	1.2-1.6
Alkyl (tertiary)		1.4-1.8
Allylic	c=c-c-	1.6-2.2
Methyl ketone	О 	2.0-2.4
Aromatic methyl	Ar-CH ₃	2.4-2.7
Alkynyl	—C ≡ C—H	2.5-3.0
Alkyl halide	H 	2.5-4.0
Alcohol	 	2.5–5.0
Alcohol, ether	-c-o-	3.3-4.5
Vinylic	c=c H	4.5–6.5
Aryl	Ar—H	6.5-8.0
Aldehyde	О СН	9.7–10.0
Carboxylic acid	о с-о-н	11.0-12.0

${\it Characteristic IR \ bands \ of some \ common \ functional \ groups:}$

Functional Group		Absorption (cm ⁻¹)	Intensity
Alkane	С-Н	2850-2960	Medium
Alkene	=C-H	3020-3100	Medium
	C=C	1640-1680	Medium
Alkyne	≡С–Н	3300	Strong
	C≡C	2100-2260	Medium
Alkyl halide	C-Cl	600-800	Strong
	C-Br	500-600	Strong
Alcohol	0-Н	3400-3650	Strong, broad
	C-O	1050-1150	Strong
Arene	С-Н	3030	Weak
Aromatic ring		1660-2000	Weak
		1450-1600	Medium
Amine	N-H	3300-3500	Medium
	C-N	1030-1230	Medium
Carbonyl compound	C=O	1670-1780	Strong
	Aldehyde	1730	Strong
	Ketone	1715	Strong
	Ester	1735	Strong
	Amide	1690	Strong
	Carboxylic acid	1710	Strong

Chemical Shifts in $^{13}\mathrm{C}\ \mathrm{NMR}$

IMAGE CREDITS

- Images were made by authors.
- Tables and image of Annex: Organic Chemistry. A tenth Edition. John McMurry, Cornell University (Emeritus), CC BY-SA 4.0, https://openstax.org/details/books/organic-chemistry.