uc3m Universidad Carlos III de Madrid

OpenCourseWare

Matemáticas para la Economía II

Paula Rosado Jiménez

Tema 3: Diferenciación de funciones de varias variables

Test de autoevaluación

1. La derivada parcial de $f(x,y)=x^2y$ respecto a x es:
a) 2 <i>xy</i>
b) χ^2
c) 2 <i>x</i>
d) <i>y</i>
2 El 1: 6 :/
2. El gradiente de una función es:
a) Un escalar
b) Un vector de derivadas parciales
c) El máximo de las derivadas
d) La integral de la función
3. La ecuación del plano tangente se obtiene a partir de:
a) Las derivadas parciales
b) El valor de la función
c) El límite de la función
d) La integral doble
4. Si $f(x,y)=x+y$, entonces la derivada direccional en la dirección del vector (1,1) es:
a) 2
b) 1
c) 0
d) Depende del punto de evaluación

5. Una función es diferenciable en un punto si:

- a) Las derivadas parciales existen y son continuas en ese punto
- b) Es continua en ese punto
- c) El gradiente es cero
- d) La función es lineal

6. La derivada parcial de $f(x,y) = e^{xy}$ respecto a y es:

- a) xe^{xy}
- b) ye^{xy}
- c) e^{xy}
- d) xye^{xy}

7. El operador nabla (∇) se utiliza para calcular:

- a) El gradiente
- b) La divergencia
- c) El rotacional
- d) Todas las anteriores

8. Si todas las derivadas parciales de primer orden son cero en un punto, entonces:

- a) La función tiene un máximo en ese punto
- b) La función tiene un mínimo en ese punto
- c) El punto es crítico
- d) No se puede determinar nada

Λ	•						, .			4	1.	• /	
u	9	deri	เพลสา	air	eccional	ΔC	máxima	CHISHIA	$\boldsymbol{\rho}$	Vector	dire	CCION	DC.
∕•	$\perp a$	uci	ıvaua	uII	cccionai	CO	шалша	cuanuo	u	V CCLOI	unc	CCIOII	CO.

- a) Paralelo al gradiente
- b) Perpendicular al gradiente
- c) De módulo uno
- d) Nulo

10. La ecuación de la recta normal a una superficie en un punto se obtiene a partir de:

- a) El gradiente en ese punto
- b) Las derivadas de segundo orden
- c) El valor de la función
- d) La integral de la función