uc3m Universidad Carlos III de Madrid

OpenCourseWare

Matemáticas para la Economía II

Paula Rosado Jiménez

Tema 3: Diferenciación de funciones de varias variables

Test de autoevaluación con soluciones

1. La derivada parcial de $f(x,y)=x^2y$ respecto a x es:							
a) 2xy							
b) χ^2							
c) 2 <i>x</i>							
d) <i>y</i>							
2. El gradiente de una función es:							
a) Un escalar							
b) Un vector de derivadas parciales							
c) El máximo de las derivadas							
d) La integral de la función							
3. La ecuación del plano tangente se obtiene a partir de:							
a) Las derivadas parciales							
b) El valor de la función							
c) El límite de la función							
d) La integral doble							
4. Si $f(x,y)=x+y$, entonces la derivada direccional en la dirección del vector (1,1) es:							
a) 2							
b) 1							
c) 0							
d) Depende del punto de evaluación							

5.	Una	función	es	diferen	ciable	en	ıın	nunto	si:
\sim	Ulla	Iuncion	CO	uncich	Clabic		uII	punto	DI •

- a) Las derivadas parciales existen y son continuas en ese punto
- b) Es continua en ese punto
- c) El gradiente es cero
- d) La función es lineal
- 6. La derivada parcial de $f(x,y) = e^{xy}$ respecto a y es:
- a) xe^{xy}
- b) ye^{xy}
- c) e^{xy}
- d) xye^{xy}
- 7. El operador nabla (∇) se utiliza para calcular:
- a) El gradiente
- b) La divergencia
- c) El rotacional
- d) Todas las anteriores
- 8. Si todas las derivadas parciales de primer orden son cero en un punto, entonces:
- a) La función tiene un máximo en ese punto
- b) La función tiene un mínimo en ese punto
- c) El punto es crítico
- d) No se puede determinar nada

Λ	•	-		1.			, .		- 1	4	1.	• /	
u	1.9	(A)	ผมของเล	dire	ccional	AC	máxima	CHISHIA	$\boldsymbol{\rho}$	Vector	direc	nnn	DC.
∕•	La	uc	uvaua	unc	CCIUIIAI	C ₂	шалша	cuanuo	u	V CCLOI	uncc		UD.

- a) Paralelo al gradiente
- b) Perpendicular al gradiente
- c) De módulo uno
- d) Nulo

10. La ecuación de la recta normal a una superficie en un punto se obtiene a partir de:

- a) El gradiente en ese punto
- b) Las derivadas de segundo orden
- c) El valor de la función
- d) La integral de la función